Item request has been placed!
×
Item request cannot be made.
×
Processing Request
ATP-mediated increase in H + efflux from retinal Müller cells of the axolotl.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Source:
Publisher: American Physiological Society Country of Publication: United States NLM ID: 0375404 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1522-1598 (Electronic) Linking ISSN: 00223077 NLM ISO Abbreviation: J Neurophysiol Subsets: MEDLINE
- Publication Information:
Publication: Bethesda Md : American Physiological Society
Original Publication: Washington [etc.]
- Subject Terms:
- Abstract:
Previous work has shown that activation of tiger salamander retinal radial glial cells by extracellular ATP induces a pronounced extracellular acidification, which has been proposed to be a potent modulator of neurotransmitter release. This study demonstrates that low micromolar concentrations of extracellular ATP similarly induce significant H + effluxes from Müller cells isolated from the axolotl retina. Müller cells were enzymatically isolated from axolotl retina and H + fluxes were measured from individual cells using self-referencing H + -selective microelectrodes. The increased H + efflux from axolotl Müller cells induced by extracellular ATP required activation of metabotropic purinergic receptors and was dependent upon calcium released from internal stores. We further found that the ATP-evoked increase in H + efflux from Müller cells of both tiger salamander and axolotl were sensitive to pharmacological agents known to interrupt calmodulin and protein kinase C (PKC) activity: chlorpromazine (CLP), trifluoperazine (TFP), and W-7 (all calmodulin inhibitors) and chelerythrine, a PKC inhibitor, all attenuated ATP-elicited increases in H + efflux. ATP-initiated H + fluxes of axolotl Müller cells were also significantly reduced by amiloride, suggesting a significant contribution by sodium-hydrogen exchangers (NHEs). In addition, α-cyano-4-hydroxycinnamate (4-cin), a monocarboxylate transport (MCT) inhibitor, also reduced the ATP-induced increase in H + efflux in both axolotl and tiger salamander Müller cells, and when combined with amiloride, abolished ATP-evoked increase in H + efflux. These data suggest that axolotl Müller cells are likely to be an excellent model system to understand the cell-signaling pathways regulating H + release from glia and the role this may play in modulating neuronal signaling. NEW & NOTEWORTHY Glial cells are a key structural part of the tripartite synapse and have been suggested to regulate synaptic transmission, but the regulatory mechanisms remain unclear. We show that extracellular ATP, a potent glial cell activator, induces H + efflux from axolotl retinal Müller (glial) cells through a calcium-dependent pathway that is likely to involve calmodulin, PKC, Na + /H + exchange, and monocarboxylate transport, and suggest that such H + release may play a key role in modulating neuronal transmission.
- References:
Physiol Rev. 2018 Oct 1;98(4):2063-2096. (PMID: 30067155)
Eur J Med Chem. 2003 Jun;38(6):547-54. (PMID: 12832126)
Circ Res. 1998 Oct 19;83(8):841-51. (PMID: 9776731)
Front Cell Neurosci. 2021 Sep 03;15:693095. (PMID: 34539347)
Biochemistry. 1997 Oct 21;36(42):12854-61. (PMID: 9335543)
J Biol Chem. 2007 Mar 16;282(11):8474-86. (PMID: 17227773)
J Neurosci. 1995 Jul;15(7 Pt 2):5179-91. (PMID: 7623144)
J Cell Biol. 1990 May;110(5):1565-73. (PMID: 2335563)
Br J Pharmacol. 2003 Feb;138(3):417-26. (PMID: 12569066)
Am J Physiol Cell Physiol. 2013 Dec 1;305(11):C1161-9. (PMID: 24088894)
Arch Biochem Biophys. 1999 Aug 1;368(1):40-4. (PMID: 10415109)
Semin Cell Dev Biol. 2020 Oct;106:61-71. (PMID: 32359891)
Channels (Austin). 2011 Jul-Aug;5(4):308-13. (PMID: 21654199)
J Neurosci. 1996 Jan;16(1):159-68. (PMID: 8613782)
J Cereb Blood Flow Metab. 2003 Nov;23(11):1263-81. (PMID: 14600433)
Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10081-5. (PMID: 7694280)
J Mol Cell Cardiol. 2013 Aug;61:68-76. (PMID: 23429007)
J Neurosci. 2008 May 7;28(19):4888-96. (PMID: 18463242)
Circulation. 2007 Mar 6;115(9):1090-100. (PMID: 17339567)
Invest Ophthalmol Vis Sci. 2003 Mar;44(3):1305-11. (PMID: 12601063)
J Neurophysiol. 2021 Jan 1;125(1):184-198. (PMID: 33206577)
Biochem J. 2007 Feb 1;401(3):623-33. (PMID: 17209804)
Am J Physiol. 1995 Jul;269(1 Pt 1):C257-66. (PMID: 7631753)
Neuroscience. 1999;92(1):367-75. (PMID: 10392858)
Am J Physiol Cell Physiol. 2001 Jan;280(1):C1-11. (PMID: 11121371)
J Gen Physiol. 1988 May;91(5):641-57. (PMID: 2458428)
Nature. 1985 Oct 31-Nov 6;317(6040):809-11. (PMID: 2414667)
Eur J Neurosci. 2012 Oct;36(8):3040-50. (PMID: 22809323)
Glia. 2003 Apr 15;42(2):149-59. (PMID: 12655599)
J Am Soc Nephrol. 1993 Oct;4(4):969-75. (PMID: 8286718)
Glia. 2004 Aug 15;47(3):268-274. (PMID: 15252816)
Neurochem Res. 2016 Jun;41(6):1229-36. (PMID: 26677077)
J Neurosci. 2001 Apr 1;21(7):2215-23. (PMID: 11264297)
Glia. 1997 Oct;21(2):194-203. (PMID: 9336234)
Curr Top Dev Biol. 2022;147:631-658. (PMID: 35337465)
Am J Physiol Cell Physiol. 2001 Oct;281(4):C1146-57. (PMID: 11546650)
Nature. 1984 May 10-16;309(5964):155-7. (PMID: 6717594)
Elife. 2021 Mar 03;10:. (PMID: 33655882)
Front Cell Neurosci. 2021 Apr 30;15:640217. (PMID: 33994945)
Biochemistry. 2003 Jun 17;42(23):7178-87. (PMID: 12795614)
Am J Hypertens. 1994 Feb;7(2):205-12. (PMID: 8179856)
J Gen Physiol. 1996 Nov;108(5):363-74. (PMID: 8923262)
Biochem J. 1990 Aug 1;269(3):827-9. (PMID: 2390070)
J Membr Biol. 1993 Aug;135(2):93-108. (PMID: 8411138)
Basic Res Cardiol. 2001 Jul;96(4):301-5. (PMID: 11518184)
PLoS One. 2018 Feb 21;13(2):e0190893. (PMID: 29466379)
J Biol Chem. 1994 May 6;269(18):13703-9. (PMID: 8175806)
J Biol Chem. 2011 Nov 25;286(47):40954-61. (PMID: 21931166)
Biochim Biophys Acta. 2009 Jul;1793(7):1174-81. (PMID: 19341767)
J Mol Cell Cardiol. 1997 Aug;29(8):2285-98. (PMID: 9281459)
Microsc Res Tech. 1999 Sep 15;46(6):398-417. (PMID: 10504217)
Am J Hypertens. 1998 Jan;11(1 Pt 1):81-7. (PMID: 9504454)
J Neurophysiol. 2012 Feb;107(3):868-79. (PMID: 22090459)
Biochem J. 1991 Apr 15;275 ( Pt 2):307-12. (PMID: 2025218)
Neurochem Res. 2004 Jan;29(1):295-304. (PMID: 14992289)
J Gen Physiol. 2007 Aug;130(2):169-82. (PMID: 17664345)
Mol Cancer Ther. 2017 Jan;16(1):217-227. (PMID: 28062709)
J Biol Chem. 1994 May 6;269(18):13710-5. (PMID: 8175807)
Trends Pharmacol Sci. 1998 Apr;19(4):131-5. (PMID: 9612087)
J Neurosci. 2000 Mar 1;20(5):1809-21. (PMID: 10684882)
J Pharmacol Exp Ther. 2007 Jan;320(1):314-22. (PMID: 17050776)
Ann N Y Acad Sci. 1991;635:468-70. (PMID: 1660251)
J Physiol. 2004 Nov 1;560(Pt 3):639-57. (PMID: 15272044)
J Neurophysiol. 2017 Dec 1;118(6):3132-3143. (PMID: 28855292)
- Grant Information:
1557725 National Science Foundation (NSF); UL1TR002003 UIC CCTS NIH; UL1 TR002003 United States TR NCATS NIH HHS; 1557820 National Science Foundation (NSF); Indiana Wesleyan University University Scholar award; UICenter for Drug Development grant; Indiana Wesleyan University Hodson Research Institute award; P40 OD019794 United States OD NIH HHS
- Contributed Indexing:
Keywords: calmodulin; glia; monocarboxylate transport; pH; protein kinase C
- Accession Number:
0 (Calmodulin)
SY7Q814VUP (Calcium)
7DZO8EB0Z3 (Amiloride)
8L70Q75FXE (Adenosine Triphosphate)
- Publication Date:
Date Created: 20231220 Date Completed: 20240117 Latest Revision: 20240828
- Publication Date:
20240828
- Accession Number:
PMC11286307
- Accession Number:
10.1152/jn.00321.2023
- Accession Number:
38116604
No Comments.