Bone mass, fracture risk, and associated factors in postmenopausal women living with HIV.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Lippincott-Raven Publishers Country of Publication: United States NLM ID: 9433353 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1530-0374 (Electronic) Linking ISSN: 10723714 NLM ISO Abbreviation: Menopause Subsets: MEDLINE
    • Publication Information:
      Publication: Hagerstown, MD : Lippincott-Raven Publishers
      Original Publication: New York, NY : Raven Press, c1994-
    • Subject Terms:
    • Abstract:
      Objective: The aim of this study was to assess the prevalence of low bone mass (osteopenia/osteoporosis), the factors associated with low bone mass, and the risk of fractures in Brazilian postmenopausal women living with HIV (WLH) in the Amazon region.
      Methods: This is a cohort study with a cross-sectional assessment at baseline conducted between March 2021 to August 2022 with 100 postmenopausal WLH undergoing antiretroviral therapy (ART) between 45 and 60 years of age and 100 age-matched HIV-negative women. Data on bone mineral density in the lumbar spine (LS) and femoral neck (FN) were collected using dual x-ray absorptiometry and the 10-year risk of hip and major osteoporotic fractures was assessed using the Fracture Risk Assessment tool (FRAX).
      Results: The age of menopause onset occurred earlier in WLH ( P < 0.001). No differences in prevalence of osteoporosis and osteopenia in LS and FN were observed except for a lower T score in FN in WLH ( P = 0.039). The FRAX for major osteoporotic fracture and hip fracture were low in both groups, despite the mean of both FRAX scores was higher in WLH ( P < 0.001). Multivariate analysis showed that years since menopause onset, higher body mass index and higher FRAX major osteoporotic fracture were associated with the WLH group, while a higher frequency of physical activity was registered in the HIV-negative group. Multivariate analysis also showed that in WLH, a lower T score in FN was associated with years since menopause onset and body mass index and that the number of years since menopause onset was associated with a lower T score in the LS and a higher score in the FRAX hip fracture.
      Conclusions: Our findings show a high prevalence of low bone mass (osteopenia/osteoporosis) in Brazilian postmenopausal women from the Amazon region. Women living with HIV have higher FRAX scores than HIV-negative women and a lower T score in the FN.
      Competing Interests: Financial disclosures/conflicts of interest: None reported.
      (Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of The Menopause Society.)
    • References:
      UNAIDS. Geneva: Joint United Nations Programme on HIV/ AIDS. HIV and Aging. A special supplement to the UNAIDS report on the global AIDS epidemic. Published online 2013. Available at: https://www.unaids.org/en/resources/presscentre/pressreleaseandstatementachive/2013/november/20131101praging . Accessed December 5, 2023.
      Antiretroviral Therapy Cohort Collaboration. Life expectancy of individuals on combination antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies. Lancet 2008;372:293–299. doi: 10.1016/S0140-6736(08)61113-7. (PMID: 10.1016/S0140-6736(08)61113-7)
      Harrison KM, Song R, Zhang X. Life expectancy after HIV diagnosis based on national hiv surveillance data from 25 states, United States. J Acquir Immune Defic Syndr 2010;53:124–130. doi: 10.1097/QAI.0b013e3181b563e7. (PMID: 10.1097/QAI.0b013e3181b563e7)
      Ofotokun I, Titanji K, Vunnava A, et al. Antiretroviral therapy induces a rapid increase in bone resorption that is positively associated with the magnitude of immune reconstitution in HIV infection. AIDS 2016;30:405–414. doi: 10.1097/QAD.0000000000000918. (PMID: 10.1097/QAD.0000000000000918)
      Duvivier C, Kolta S, Assoumou L, et al. Greater decrease in bone mineral density with protease inhibitor regimens compared with nonnucleoside reverse transcriptase inhibitor regimens in HIV-1 infected naive patients. AIDS 2009;23:817–824. doi: 10.1097/QAD.0b013e328328f789. (PMID: 10.1097/QAD.0b013e328328f789)
      Brown TT, McComsey GA, King MS, Qaqish RB, Bernstein BM, Da Silva BA. Loss of bone mineral density after antiretroviral therapy initiation, independent of antiretroviral regimen. J Acquir Immune Defic Syndr 2009;51:554–561. doi: 10.1097/QAI.0b013e3181adce44. (PMID: 10.1097/QAI.0b013e3181adce44)
      Carr A, Grund B, Schwartz AV, et al. The rate of bone loss slows after 1–2 years of initial antiretroviral therapy: final results of the Strategic Timing of Antiretroviral Therapy (START) bone mineral density substudy. HIV Med 2020;21:64–70. doi: 10.1111/hiv.12796. (PMID: 10.1111/hiv.12796)
      Starup-Linde J, Rosendahl SB, Storgaard M, Langdahl B. Management of osteoporosis in patients living with HIV—a systematic review and meta-analysis. J Acquir Immune Defic Syndr 2020;83:1–8. doi: 10.1097/QAI.0000000000002207. (PMID: 10.1097/QAI.0000000000002207)
      Chang C-J, Chan Y-L, Pramukti I, Ko N-Y, Tai T-W. People with HIV infection had lower bone mineral density and increased fracture risk: a meta-analysis. Arch Osteoporos 2021;16:47. doi: 10.1007/s11657-021-00903-y. (PMID: 10.1007/s11657-021-00903-y)
      Premaor MO, Compston JE. The hidden burden of fractures in people living with HIV. JBMR Plus 2018;2:247–256. doi: 10.1002/jbm4.10055. (PMID: 10.1002/jbm4.10055)
      Salari N, Ghasemi H, Mohammadi L, et al. The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis. J Orthop Surg Res 2021;16:609. doi: 10.1186/s13018-021-02772-0. (PMID: 10.1186/s13018-021-02772-0)
      Erlandson KM, Lake JE, Sim M, et al. Bone mineral density declines twice as quickly among HIV-infected women compared with men. J Acquir Immune Defic Syndr 2018;77:288–294. doi: 10.1097/QAI.0000000000001591. (PMID: 10.1097/QAI.0000000000001591)
      Greendale GA, Sowers M, Han W, et al. Bone mineral density loss in relation to the final menstrual period in a multiethnic cohort: results from the Study of Women's Health Across the Nation (SWAN). J Bone Miner Res 2012;27:111–118. doi: 10.1002/jbmr.534. (PMID: 10.1002/jbmr.534)
      Riggs BL, Khosla S, Melton LJ 3rd. A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res 1998;13:763–773. doi: 10.1359/jbmr.1998.13.5.763. (PMID: 10.1359/jbmr.1998.13.5.763)
      Sharma A, Flom PL, Rosen CJ, Schoenbaum EE. Racial differences in bone loss and relation to menopause among HIV-infected and uninfected women. Bone 2015;77:24–30. doi: 10.1016/j.bone.2015.04.018. (PMID: 10.1016/j.bone.2015.04.018)
      Ellis C, Kruger HS, Viljoen M, Dave JA, Kruger MC. Factors associated with bone mineral density and bone resorption markers in postmenopausal HIV-infected women on antiretroviral therapy: a prospective cohort study. Nutrients 2021;13:2090. doi: 10.3390/nu13062090. (PMID: 10.3390/nu13062090)
      Sharma A, Ma Y, Tien PC, et al. HIV infection is associated with abnormal bone microarchitecture: measurement of trabecular bone score in the Women's Interagency HIV Study. J Acquir Immune Defic Syndr 2018;78:441–449. doi: 10.1097/QAI.0000000000001692. (PMID: 10.1097/QAI.0000000000001692)
      Sharma A, Hoover DR, Shi Q, et al. Human immunodeficiency virus (HIV) and menopause are independently associated with lower bone mineral density: results from the Women's Interagency HIV Study. Clin Infect Dis 2022;75:65–72. doi: 10.1093/cid/ciab874. (PMID: 10.1093/cid/ciab874)
      Breasail MÓ, Gregson CL, Norris SA, et al. Menopause is associated with bone loss, particularly at the distal radius, in black South African women: findings from the Study of Women Entering and in Endocrine Transition (SWEET). Bone 2022;164:116543. doi: 10.1016/j.bone.2022.116543. (PMID: 10.1016/j.bone.2022.116543)
      Rapuri PB, Gallagher JC, Haynatzki G. Endogenous levels of serum estradiol and sex hormone binding globulin determine bone mineral density, bone remodeling, the rate of bone loss, and response to treatment with estrogen in elderly women. J Clin Endocrinol Metab 2004;89:4954–4962. doi: 10.1210/jc.2004-0434. (PMID: 10.1210/jc.2004-0434)
      Cummings SR, Browner WS, Bauer D, et al. Endogenous hormones and the risk of hip and vertebral fractures among older women. N Engl J Med 1998;339:733–738. doi: 10.1056/NEJM199809103391104. (PMID: 10.1056/NEJM199809103391104)
      Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet 2002;359:1761–1767. doi: 10.1016/S0140-6736(02)08657-9. (PMID: 10.1016/S0140-6736(02)08657-9)
      Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 2007;22:465–475. doi: 10.1359/jbmr.061113. (PMID: 10.1359/jbmr.061113)
      Guaraldi G, Orlando G, Zona S, et al. Premature age-related comorbidities among HIV-infected persons compared with the general population. Clin Infect Dis 2011;53:1120–1126. doi: 10.1093/cid/cir627. (PMID: 10.1093/cid/cir627)
      Brown TT, Hoy J, Borderi M, et al. Recommendations for evaluation and management of bone disease in HIV. Clin Infect Dis 2015;60:1242–1251. doi: 10.1093/cid/civ010. (PMID: 10.1093/cid/civ010)
      Ryom L, De Miguel R, Cotter AG, et al. Major revision version 11.0 of the European AIDS Clinical Society Guidelines 2021. HIV Med 2022;23:849–858. doi: 10.1111/hiv.13268. (PMID: 10.1111/hiv.13268)
      Sharma A, Shi Q, Hoover DR, et al. Increased fracture incidence in middle-aged HIV-infected and HIV-uninfected women: updated results from the Women's Interagency HIV Study. J Acquir Immune Defic Syndr 2015;70:54–61. doi: 10.1097/QAI.0000000000000674. (PMID: 10.1097/QAI.0000000000000674)
      Brasil. Ministério da Saúde. Boletim Epidemiológico de HIV/Aids .; 2022. Available at: https://www.gov.br/aids/pt-br/central-de-conteudo/boletins-epidemiologicos/2022/hiv-aids/boletim_hiv_aids_-2022_internet_31-01-23.pdf/view . Accessed December 5, 2023.
      CDC. Centers for Disease Control and Prevention. Defining Adult Overweight & Obesity .; 2022. Available at: https://www.cdc.gov/obesity/basics/adult-defining.html . Accessed December 5, 2023.
      Kanis JA; on behalf of the World Health Organization Scientific Group. Assessment of osteoporosis at the primary health-care level. Technical report. WHO Collaborating Centre, University of Sheffield, UK. 2008. Available at: https://www.shef.ac.uk/FRAX . Accessed December 5, 2023.
      Kanis JA, Borgstrom F, De Laet C, et al. Assessment of fracture risk. Osteoporos Int 2005;16:581–589. doi: 10.1007/s00198-004-1780-5. (PMID: 10.1007/s00198-004-1780-5)
      Lauretani F, Bandinelli S, Griswold ME, et al. Longitudinal changes in BMD and bone geometry in a population-based study. J Bone Miner Res 2008;23:400–408. doi: 10.1359/jbmr.071103. (PMID: 10.1359/jbmr.071103)
      Sowers MR, Zheng H, Jannausch ML, et al. Amount of bone loss in relation to time around the final menstrual period and follicle-stimulating hormone staging of the transmenopause. J Clin Endocrinol Metab 2010;95:2155–2162. doi: 10.1210/jc.2009-0659. (PMID: 10.1210/jc.2009-0659)
      Siris ES, Adler R, Bilezikian J, et al. The clinical diagnosis of osteoporosis: a position statement from the National Bone Health Alliance Working Group. Osteoporos Int 2014;25:1439–1443. doi: 10.1007/s00198-014-2655-z. (PMID: 10.1007/s00198-014-2655-z)
      Lippuner K, Johansson H, Kanis JA, Rizzoli R. FRAX® assessment of osteoporotic fracture probability in Switzerland. Osteoporos Int 2010;21:381–389. doi: 10.1007/s00198-009-0975-1. (PMID: 10.1007/s00198-009-0975-1)
      Gomes DC, Valadares AL, Amaral E, et al. Association between HIV infection and bone mineral density in climacteric women. Arch Osteoporos 2015;10:33. doi: 10.1007/s11657-015-0238-z. (PMID: 10.1007/s11657-015-0238-z)
      Arnsten JH, Freeman R, Howard AA, Floris-Moore M, Santoro N, Schoenbaum EE. HIV infection and bone mineral density in middle-aged women. Clin Infect Dis 2006;42:1014–1020. doi: 10.1086/501015. (PMID: 10.1086/501015)
      Demir A, Kutlu R, Civi S. Assessment of 10-Year major osteoporotic and femur fracture risk of postmenopausal women using FRAX®. Türkiye Fiz Tip ve Rehabil Derg 2014;60:11–18. doi: 10.5152/tftrd.2014.78736. (PMID: 10.5152/tftrd.2014.78736)
      Yuh B, Tate J, Butt AA, et al. Weight change after antiretroviral therapy and mortality. Clin Infect Dis 2015;60:1852–1859. doi: 10.1093/cid/civ192. (PMID: 10.1093/cid/civ192)
      Gregson CL, Armstrong DJ, Bowden J, et al. UK clinical guideline for the prevention and treatment of osteoporosis. Arch Osteoporos 2022;17:58. doi: 10.1007/s11657-022-01061-5. (PMID: 10.1007/s11657-022-01061-5)
      Compston J. HIV infection and bone disease. J Intern Med 2016;280:350–358. doi: 10.1111/joim.12520. (PMID: 10.1111/joim.12520)
      Johnston CB, Dagar M. Osteoporosis in older adults. Med Clin North Am 2020;104:873–884. doi: 10.1016/j.mcna.2020.06.004. (PMID: 10.1016/j.mcna.2020.06.004)
      Ji M-X, Yu Q. Primary osteoporosis in postmenopausal women. Chronic Dis Transl Med 2015;1:9–13. doi: 10.1016/j.cdtm.2015.02.006. (PMID: 10.1016/j.cdtm.2015.02.006)
      Yin MT, Shu A, Zhang CA, et al. Trabecular and cortical microarchitecture in postmenopausal HIV-infected women. Calcif Tissue Int 2013;92:557–565. doi: 10.1007/s00223-013-9716-8. (PMID: 10.1007/s00223-013-9716-8)
    • Publication Date:
      Date Created: 20231219 Date Completed: 20240101 Latest Revision: 20240101
    • Publication Date:
      20240102
    • Accession Number:
      10.1097/GME.0000000000002293
    • Accession Number:
      38113435