Social valuation of biodiversity relative to other types of assets at risk in wildfire.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Blackwell Publishing, Inc. on behalf of the Society for Conservation Biology Country of Publication: United States NLM ID: 9882301 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1523-1739 (Electronic) Linking ISSN: 08888892 NLM ISO Abbreviation: Conserv Biol Subsets: MEDLINE
    • Publication Information:
      Publication: Malden, MA : Blackwell Publishing, Inc. on behalf of the Society for Conservation Biology
      Original Publication: Boston, Mass. : Blackwell Scientific Publications,
    • Subject Terms:
    • Abstract:
      Environmental crises, such as wildfires, can cause major losses of human life, infrastructure, biodiversity, and cultural values. In many such situations, incident controllers must make fateful choices about what to protect-and hence what to abandon. With an online representative survey of >2000 adult Australians, we investigated social attitudes to this dilemma. We used best-worst scaling to assess preferences across a set of 11 assets representing human life, infrastructure, biodiversity, and cultural values. Survey respondents overwhelmingly prioritized a single human life (best-worst score of 6647 out of possible score ranging from -10695 to 10695), even if that choice resulted in extinction of other species. Inanimate (replaceable) objects were accorded lowest priority (best-worst scores of -4655 for a shed and -3242 for a house). Among biodiversity assets, respondents prioritized protecting a population of the iconic koala (Phascolarctos cinereus) (best-worst score of 1913) ahead of preventing the extinction of a snail (score -329) and a plant species (-226). These results variably support current policy in that they emphasize the importance the community places on protection of human life, but results diverged from conventional practice in rating some biodiversity assets ahead of infrastructure. The preference for protecting a population of koalas ahead of action taken to prevent the extinction of an invertebrate and plant species corroborates previous research reporting biases in the way people value nature. If noncharismatic species are not to be treated as expendable, then the case for preventing their extinction needs to be better made to the community. Given the increasing global incidence of high-severity wildfires, further sampling of societal preferences among diverse asset types is needed to inform planning, policy, and practice relating to wildfire. Other preemptive targeted management actions (such as translocations) are needed to conserve biodiversity, especially noniconic species, likely to be imperiled by catastrophic events.
      (© 2024 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology.)
    • References:
      Abatzoglou, J. T., Williams, A. P., & Barbero, R. (2019). Global emergence of anthropogenic climate change in fire weather indices. Geophysical Research Letters, 46(1), 326–336. https://doi.org/10.1029/2018GL080959.
      Aizaki, H. (2023). support.BWS: Tools for case 1 best‐worst scaling. R package version 0.4‐6. https://cran.r‐project.org/web/packages/support.BWS/index.html.
      Bakhtiari, F., Jacobsen, J. B., Strange, N., & Helles, F. (2014). Revealing lay people's perceptions of forest biodiversity value components and their application in valuation method. Global Ecology and Conservation, 1(1), 27–42. https://doi.org/10.1016/j.gecco.2014.07.003.
      Bhatta, M., Zander, K. K., & Garnett, S. T. (2022). Governance of forest resource use in western Nepal: Current state and community preferences. Ambio, 51(7), 1711–1725. https://doi.org/10.1007/s13280‐021‐01694‐9.
      Burton, N., Burton, M., Fisher, C., Peña, P. G., Rhodes, G., & Ewing, L. (2021). Beyond Likert ratings: Improving the robustness of developmental research measurement using best–worst scaling. Behavior Research Methods, 53(5), 2273–2279. https://doi.org/10.3758/s13428‐021‐01566‐w.
      Campbell, D., & Erdem, S. (2015). Position bias in best‐worst scaling surveys: A case study on trust in institutions. American Journal of Agricultural Economics, 97(2), 526–545. https://doi.org/10.1093/ajae/aau112.
      Canadell, J. G., Meyer, C. P., Cook, G. D., Dowdy, A., Briggs, P. R., Knauer, J., Pepler, A., & Haverd, V. (2021). Multi‐decadal increase of forest burned area in Australia is linked to climate change. Nature Communications, 12, Article 6921. https://doi.org/10.1038/s41467‐021‐27225‐4.
      Chrzan, K., & Peitz, M. (2019). Best‐Worst Scaling with many items. Journal of Choice Modelling, 30, 61–72. https://doi.org/10.1016/j.jocm.2019.01.002.
      Colléony, A., Clayton, S., Couvet, D., Saint Jalme, M., & Prévot, A.‐C. (2017). Human preferences for species conservation: Animal charisma trumps endangered status. Biological Conservation, 206, 263–269. https://doi.org/10.1016/j.biocon.2016.11.035.
      Commonwealth of Australia. (2022). 2022–2032 Threatened Species Action Plan: Towards zero extinctions. Department of Climate Change Energy the Environment and Water.
      Convention on Biological Diversity (CBD). (2022). Kunming‐Montreal Global Biodiversity Framework: Decision CBD/COP/15/L.25. Secretariat of the Convention on Biological Diversity.
      Decker, O., Foon, J. K., Köhler, F., Moussalli, A., Murphy, N. P., & Green, P. T. (2023). Fire severity is an important driver of land snail declines after the black summer bushfires in Australia. Biological Conservation, 279, Article 109906. https://doi.org/10.1016/j.biocon.2023.109906.
      Dillman, D. A., Smyth, J. D., & Christian, L. M. (2014). Internet, phone, mail, and mixed‐mode surveys: The tailored design method. John Wiley & Sons.
      Duffy, B., Smith, K., Terhanian, G., & Bremer, J. (2005). Comparing data from online and face‐to‐face surveys. International Journal of Research in Marketing, 47(6), 615–639. https://doi.org/10.1177/147078530504700602.
      Ferri‐García, R., & Rueda, M. D. M. (2020). Propensity score adjustment using machine learning classification algorithms to control selection bias in online surveys. PLoS ONE, 15(4), Article e0231500. https://doi.org/10.1371/journal.pone.0231500.
      Finn, A., & Louviere, J. J. (1992). Determining the appropriate response to evidence of public concern: The case of food safety. Journal of Public Policy and Marketing, 11(2), 12–25. https://doi.org/10.1177/074391569201100202.
      Gallagher, R., Barrett, S., Bell, S. A. J., Copeland, L. M., Dillon, R., Gosper, C. R., Keith, D., Le Breton, T. D., Mackenzie, B. D. E., Messina, A., Neldner, V. J., Ngugi, M. R., Nolan, R. H., Ooi, M. K. J., Tasker, E. M., Tozer, M., Walsh, N. G., Yates, C. J., & Auld, T. D. (2023). Blackened roots and green shoots: Emerging trends in decline and recovery in Australian plant species after the 2019–20 wildfires. In L. Rumpff, S. M. Legge, S. van Leeuwen, B. Wintle, & J. C. Z. Woinarski (Eds.), Australia's megafires: Biodiversity impacts and lessons from 2012–2020 (pp. 111–126). CSIRO Publishing.
      Government of NSW. (2020). Final report of the NSW Bushfire Inquiry. Author.
      Gregg, E. A., Kidd, L. R., Bekessy, S. A., Martin, J. K., Robinson, J. A., & Garrard, G. E. (2022). Ethical considerations for conservation messaging research and practice. People and Nature, 4(5), 1098–1112. https://doi.org/10.1002/pan3.10373.
      Inspector‐General for Emergency Management. (2020). Inquiry into the 2019–20 Victorian fire season. Phase 1: Community and sector preparedness for and response to the 2019–20 fire season. Government of Victoria.
      Jacobsen, J. B., Boiesen, J. H., Thorsen, B. J., & Strange, N. (2008). What's in a name? The use of quantitative measures versus ‘Iconised’ species when valuing biodiversity. Environmental and Resource Economics, 39, 247–263. https://doi.org/10.1007/s10640‐007‐9107‐6.
      Kelly, L. T., Giljohann, K. M., Duane, A., Aquilué, N., Archibald, S., Batllori, E., Bennett, A. F., Buckland, S. T., Canelles, Q., Clarke, M. F., Fortin, M.‐J., Hermoso, V., Herrando, S., Keane, R. E., Lake, F. K., McCarthy, M. A., Ordóñez, A. M., Parr, C. L., Pausas, J. G., … Brotons, L. (2020). Fire and biodiversity in the Anthropocene. Science, 370(6519), Article eabb0355. https://doi.org/10.1126/science.abb0355.
      Kusmanoff, A. M., Fidler, F., Gordon, A., Garrard, G. E., & Bekessy, S. A. (2020). Five lessons to guide more effective biodiversity conservation message framing. Conservation Biology, 34(5), 1131–1141. https://doi.org/10.1111/cobi.13482.
      Lewis‐Brown, E., Beatty, H., Davis, K., Rabearisoa, A., Ramiaramanana, J., Mascia, M. B., & Mills, M. (2021). The importance of future generations and conflict management in conservation. Conservation Science and Practice, 3(9), Article e488. https://doi.org/10.1111/csp2.488.
      Loose, S. M., & Lockshin, L. (2013). Testing the robustness of best worst scaling for cross‐national segmentation with different numbers of choice sets. Food Quality and Preference, 27(2), 230–242. https://doi.org/10.1016/j.foodqual.2012.02.002.
      Louviere, J. J., Flynn, T. N., & Marley, A. J. (2015). Best‐worst scaling: Theory, methods and applications. Cambridge University Press.
      Louviere, J. J., Lings, I., Islam, T., Gudergan, S., & Flynn, T. N. (2013). An introduction to the application of (case 1) best–worst scaling in marketing research. International Journal of Research in Marketing, 30(3), 292–303. https://doi.org/10.1016/j.ijresmar.2012.10.002.
      Mandel, D. R., & Vartanian, O. (2008). Taboo or tragic: Effect of tradeoff type on moral choice, conflict, and confidence. Mind & Society, 7(2), 215–226.
      Marley, A. A., & Louviere, J. J. (2005). Some probabilistic models of best, worst, and best‐worst choices. Journal of Mathematical Psychology, 49(6), 464–480. https://doi.org/10.1016/j.jmp.2005.05.003.
      Marsh, J. R., Bal, P., Fraser, H., Umbers, K., Latty, T., Greenville, A., Rumpff, L., & Woinarski, J. C. Z. (2022). Accounting for the neglected: Invertebrate species and the 2019–20 Australian megafires. Global Ecology and Biogeography, 31(3), 2120–2130. https://doi.org/10.1111/geb.13550.
      Miralles, A., Raymond, M., & Lecointre, G. (2019). Empathy and compassion toward other species decrease with evolutionary divergence time. Scientific Reports, 9(1), Article 19555. https://doi.org/10.1038/s41598‐019‐56006‐9.
      Moir, M. L. (2021). Coextinction of Pseudococcus markharveyi (Hemiptera: Pseudococcidae): A case study in the modern insect extinction crisis. Austral Entomology, 60(1), 89–97. https://doi.org/10.1111/aen.12506.
      Moskwa, E., Bardsley, D. K., Weber, D., & Robinson, G. M. (2018). Living with bushfire: Recognising ecological sophistication to manage risk while retaining biodiversity values. International Journal of Disaster Risk Reduction, 27, 459–469. https://doi.org/10.1016/j.ijdrr.2017.11.010.
      Moskwa, E. C., Ahonen, I., Santala, V., Weber, D., Robinson, G. M., & Bardsley, D. K. (2016). Perceptions of bushfire risk mitigation and biodiversity conservation: A systematic review of fifteen years of research. Environmental Reviews, 24(3), 219–232. https://doi.org/10.1139/er‐2015‐0070.
      Otero, I., Castellnou, M., González, I., Arilla, E., Castell, L., Castellví, J., Sánchez, F., & Nielsen, J. Ø. (2018). Democratizing wildfire strategies. Do you realize what it means? Insights from a participatory process in the Montseny region (Catalonia, Spain). PLoS ONE, 13(10), Article e0204806. https://doi.org/10.1371/journal.pone.0204806.
      Pearson, E. L., Mellish, S., McLeod, E. M., Sanders, B., & Ryan, J. C. (2022). Can we save Australia's endangered wildlife by increasing species recognition? Journal for Nature Conservation, 69, Article 126257. https://doi.org/10.1016/j.jnc.2022.126257.
      Régnier, C., Achaz, G., Lambert, A., Cowie, R. H., Bouchet, P., & Fontaine, B. (2015). Mass extinction in poorly known taxa. Proceedings of the National Academy of Sciences of the United States of America, 112(25), 7761–7766. https://doi.org/10.1073/pnas.1502350112.
      Régnier, C., Fontaine, B., & Bouchet, P. (2009). Not knowing, not recording, not listing: Numerous unnoticed mollusk extinctions. Conservation Biology, 23(5), 1214–1221. https://doi.org/10.1111/j.1523‐1739.2009.01245.x.
      Royal Commission into National Natural Disaster Arrangements. (2020). Royal Commission into National Natural Disaster Arrangements Report. Commonwealth of Australia.
      Rumpff, L., Legge, S. M., van Leeuwen, S., Wintle, B., & Woinarski, J. C. Z. (Eds.). (2023). Australia's megafires: Biodiversity impacts and lessons from 2019–2020. CSIRO Publishing.
      Sailer, O. (2015). crossdes: Construction of crossover designs. R package version 1.1‐1. https://cran.r‐project.org/web/packages/crossdes/index.html.
      Sherwin, S. L., Campbell‐Ward, M., & Woods, R. (2023). Wildlife welfare and the 2019–20 wildfires. In L. Rumpff, S. M. Legge, S. van Leeuwen, B. Wintle, & J. C. Z. Woinarski (Eds.), Australia's megafires: Biodiversity impacts and lessons from 2019–2020 (pp. 343–356). CSIRO Publishing.
      Stanisic, J., Shea, M., Potter, D., & Griffiths, O. (2010). Australian land snails. Volume 1. A field guide to eastern Australian species. Bioculture Press.
      Szolnoki, G., & Hoffmann, D. (2013). Online, face‐to‐face and telephone surveys—Comparing different sampling methods in wine consumer research. Wine Economics and Policy, 2(2), 57–66. https://doi.org/10.1016/j.wep.2013.10.001.
      Tetlock, P. E. (2003). Thinking the unthinkable: Sacred values and taboo cognitions. Trends in Cognitive Sciences, 7(7), 320–324. https://doi.org/10.1016/S1364‐6613(03)00135‐9.
      The Senate Environment and Communication References Committee. (2011). The koala—Saving our national icon. Author.
      Thomson, T. J. (2021). Picturing destruction at home and abroad: A comparative visual analysis of icons and news values during disaster. Media International Australia, 181(1), 197–216. https://doi.org/10.1177/1329878X211008181.
      Tisdell, C., Swarna Nantha, H., & Wilson, C. (2007). Endangerment and likeability of wildlife species: How important are they for payments proposed for conservation? Ecological Economics, 60(3), 627–633. https://doi.org/10.1016/j.ecolecon.2006.01.007.
      Tisdell, C., Wilson, C., & Nantha, H. S. (2006). Public choice of species for the ‘Ark’: Phylogenetic similarity and preferred wildlife species for survival. Journal for Nature Conservation, 14(2), 97–105. https://doi.org/10.1016/j.jnc.2005.11.001.
      van Leeuwen, S., & Miller‐Sabbioni, C. (2023). Impacts of wildfire on Indigenous cultural values. In L. Rumpff, S. M. Legge, S. van Leeuwen, B. Wintle, & J. C. Z. Woinarski, (Eds.), Australia's megafires: Biodiversity impacts and lessons from 2019–2020. (pp. 23–32). CSIRO Publishing.
      Varela, E., Verheyen, K., Valdés, A., Soliño, M., Jacobsen, J. B., De Smedt, P., Ehrmann, S., Gärtner, S., Górriz, E., & Decocq, G. (2018). Promoting biodiversity values of small forest patches in agricultural landscapes: Ecological drivers and social demand. Science of the Total Environment, 619, 1319–1329. https://doi.org/10.1016/j.scitotenv.2017.11.190.
      Walsh, J. C., Watson, J. E. M., Bottrill, M. C., Joseph, L. N., & Possingham, H. P. (2013). Trends and biases in the listing and recovery planning for threatened species: An Australian case study. Oryx, 47(1), 134–143. https://doi.org/10.1017/S003060531100161X.
      Whittaker, J., Taylor, M., & Bearman, C. (2020). Why don't bushfire warnings work as intended? Responses to official warnings during bushfires in New South Wales, Australia. International Journal of Disaster Risk Reduction, 45, Article 101476. https://doi.org/10.1016/j.ijdrr.2020.101476.
      Williams, K. J. H., Ford, R. M., & Rawluk, A. (2018). Values of the public at risk of wildfire and its management. International Journal of Wildland Fire, 27(10), 665–676. https://doi.org/10.1071/WF18038.
      Williams, K. J. H., Ford, R. M., & Rawluk, A. (2021). Changing bushfire management practices to incorporate diverse values of the public. Environmental Science & Policy, 125, 87–95.
      Woinarski, J. C. Z. (2018). A bat's end: The Christmas Island pipistrelle and extinction in Australia. CSIRO Publishing.
      Woinarski, J. C. Z., Garnett, S. T., Legge, S. M., & Lindenmayer, D. B. (2017). The contribution of policy, law, management, research, and advocacy failings to the recent extinctions of three Australian vertebrate species. Conservation Biology, 31(1), 13–23. https://doi.org/10.1111/cobi.12852.
      Woinarski, J. C. Z., McCormack, P. C., McDonald, J., Legge, S., Garnett, S. T., Wintle, B., & Rumpff, L. (2023). Making choices: Prioritising the protection of biodiversity in wildfires. International Journal of Wildland Fire, 32(7), 1031–1038. https://doi.org/10.1071/WF22229.
      Woods, B. (2000). Beauty and the beast: Preferences for animals in Australia. The Journal of Tourism Studies, 11(2), 25–35.
      Woolaston, K., & Akhtar‐Khavari, A. (2020). Extinction, law and thinking emotionally about invertebrates. Griffith Law Review, 29(4), 585–610. https://doi.org/10.1080/10383441.2020.1938798.
      Zander, K. K., Burton, M., Pandit, R., Gunawardena, A., Pannell, D., & Garnett, S. T. (2022). How public values for threatened species are affected by conservation strategies. Journal of Environmental Management, 319, Article 115659. https://doi.org/10.1016/j.jenvman.2022.115659.
      Zander, K. K., St‐Laurent, G. P., Hogg, C. J., Sunnucks, P., Woinarski, J., Legge, S., Burton, M., Pandit, R., Hagerman, S., & Garnett, S. T. (2021). Measuring social preferences for conservation management in Australia. Biological Conservation, 262, Article 109323. https://doi.org/10.1016/j.biocon.2021.109323.
    • Contributed Indexing:
      Keywords: best–worst scaling; disaster; extinction; prioritization; sacred values
      Local Abstract: [Publisher, Spanish; Castilian] Valoración social de la biodiversidad en relación con otros tipos de activos en riesgo durante los incendios Resumen Las crisis ambientales, como los incendios, pueden causar pérdidas mayores de infraestructura, vida humana, biodiversidad y valores culturales. En muchas de estas situaciones, quienes controlan el incidente deben tomar decisiones fatídicas sobre qué proteger y, por lo tanto, qué abandonar. Aplicamos en línea una encuesta representativa a más de 2000 australianos adultos para investigar las actitudes sociales ante este dilema. Usamos la escala de mejor‐peor para valorar las preferencias en once activos que representaban la vida humana, infraestructura, biodiversidad y valores culturales. Los encuestados priorizaron de manera abrumadora la vida humana (puntaje de 6647 en la escala de mejor‐peor con un puntaje posible entre ‐10695 y 10695), incluso si esto implicaba la extinción de otras especies. Los objetos inanimados (reemplazables) fueron los de menor prioridad (puntaje de ‐4655 para una choza y ‐3242 para una casa). Entre los activos de biodiversidad, los encuestados priorizaron la protección de una población del icónico koala (Phascolarctos cinereus) (puntaje de 1913) por encima de la extinción de una especie de caracol (‐329) y una de planta (‐226). Estos resultados respaldan de forma variada la política actual pues resaltan la importancia que la comunidad le da a la protección de la vida humana, pero los resultados discreparon de la práctica convencional al puntear a algunos activos de la biodiversidad por encima de la infraestructura. La preferencia por proteger la población de koalas por encima de evitar la extinción de una especie invertebrada y una especie botánica corrobora las investigaciones anteriores que reportan un sesgo en la forma en la que la población valora la naturaleza. Si queremos que las especies carismáticas no sean tratadas como prescindibles, entonces se le debe plantear de mejor manera a la población el caso para prevenir su extinción. Con el aumento en la incidencia mundial de incendios de gravedad, se necesita un mayor muestreo de las preferencias sociales por los diferentes tipos de activos para guiar la planeación, políticas y prácticas en relación con los incendios. Se requieren otras acciones de manejo preventivo enfocado (como las reubicaciones) para conservar la biodiversidad con probabilidad de estar en peligro durante eventos catastróficos, especialmente las especies que no son icónicas.
    • Publication Date:
      Date Created: 20231219 Date Completed: 20240529 Latest Revision: 20240529
    • Publication Date:
      20240529
    • Accession Number:
      10.1111/cobi.14230
    • Accession Number:
      38111965