Menu
×
West Ashley Library
Closed (2024 - Christmas)
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed (2024 - Christmas)
Phone: (843) 805-6888
Village Library
Closed (2024 - Christmas)
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed (2024 - Christmas)
Phone: (843) 889-3300
Otranto Road Library
Closed (2024 - Christmas)
Phone: (843) 572-4094
Mt. Pleasant Library
Closed (2024 - Christmas)
Phone: (843) 849-6161
McClellanville Library
Closed (2024 - Christmas)
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed (2024 - Christmas)
Phone: (843) 744-2489
John's Island Library
Closed (2024 - Christmas)
Phone: (843) 559-1945
Hurd/St. Andrews Library
Closed (2024 - Christmas)
Phone: (843) 766-2546
Folly Beach Library
Closed (2024 - Christmas)
Phone: (843) 588-2001
Edisto Island Library
Closed (2024 - Christmas)
Phone: (843) 869-2355
Dorchester Road Library
Closed (2024 - Christmas)
Phone: (843) 552-6466
John L. Dart Library
Closed (2024 - Christmas)
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed (2024 - Christmas)
Phone: (843) 795-6679
Main Library
Closed (2024 - Christmas)
Phone: (843) 805-6930
Bees Ferry West Ashley Library
Closed (2024 - Christmas)
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed (2024 - Christmas)
Phone: (843) 883-3914
Mobile Library
Closed (2024 - Christmas)
Phone: (843) 805-6909
Today's Hours
West Ashley Library
Closed (2024 - Christmas)
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed (2024 - Christmas)
Phone: (843) 805-6888
Village Library
Closed (2024 - Christmas)
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed (2024 - Christmas)
Phone: (843) 889-3300
Otranto Road Library
Closed (2024 - Christmas)
Phone: (843) 572-4094
Mt. Pleasant Library
Closed (2024 - Christmas)
Phone: (843) 849-6161
McClellanville Library
Closed (2024 - Christmas)
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed (2024 - Christmas)
Phone: (843) 744-2489
John's Island Library
Closed (2024 - Christmas)
Phone: (843) 559-1945
Hurd/St. Andrews Library
Closed (2024 - Christmas)
Phone: (843) 766-2546
Folly Beach Library
Closed (2024 - Christmas)
Phone: (843) 588-2001
Edisto Island Library
Closed (2024 - Christmas)
Phone: (843) 869-2355
Dorchester Road Library
Closed (2024 - Christmas)
Phone: (843) 552-6466
John L. Dart Library
Closed (2024 - Christmas)
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed (2024 - Christmas)
Phone: (843) 795-6679
Main Library
Closed (2024 - Christmas)
Phone: (843) 805-6930
Bees Ferry West Ashley Library
Closed (2024 - Christmas)
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed (2024 - Christmas)
Phone: (843) 883-3914
Mobile Library
Closed (2024 - Christmas)
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Spatial soil loss prediction impacted by long-term land use/land cover change: a case study of Swat District.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Haseeb M;Haseeb M;Haseeb M; Tahir Z; Tahir Z; Mahmood SA; Mahmood SA; Batool S; Batool S; Farooq MU; Farooq MU
- Source:
Environmental monitoring and assessment [Environ Monit Assess] 2023 Dec 14; Vol. 196 (1), pp. 37. Date of Electronic Publication: 2023 Dec 14.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Springer Country of Publication: Netherlands NLM ID: 8508350 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2959 (Electronic) Linking ISSN: 01676369 NLM ISO Abbreviation: Environ Monit Assess Subsets: MEDLINE
- Publication Information: Publication: 1998- : Dordrecht : Springer
Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981- - Subject Terms:
- Abstract: Soil erosion is a destructive consequence of land degradation caused by deforestation, improper farming practices, overgrazing, and urbanization. This irreversible effect negatively impacts the limited renewable soil resource, causing soil truncation, reduced fertility, and unstable slopes. To address the anticipation of erosion modulus resulting from long-term land use and land cover (LULC) changes, a study was conducted in the Swat District of Khyber Pakhtunkhwa (Kpk), Pakistan. The study aimed to predict and evaluate soil erosion concerning these changes using remote sensing (RS), geographic information systems (GIS), and the Revised Universal Soil Loss Equation (RUSLE) model. We also evaluated the impact of the Billion Tree Tsunami Project (BTTP) on soil erosion in the region. Model inputs, such as rainfall erosivity factor, topography factor, land cover and management factor, and erodibility factor, were used to calculate soil erosion. The results revealed that significant soil loss occurred under 2001, 2011, and 2021 LULC conditions, accounting for 67.26%, 61.78%, and 65.32%, falling within the category of low erosion potential. The vulnerable topographical features of the area indicated higher erosion modulus. The maximum soil loss rates observed in 2001, 2011, and 2021 were 80 t/ha -1 /year -1 , 120 t/ha -1 /year -1 , and 96 t/ha -1 /year -1 , respectively. However, the observed reduction in soil loss in 2021 as compared to 2001 and 2011 suggests a positive influence of the BTTP on soil conservation efforts. This study underscores the potential of afforestation initiatives like the BTTP in mitigating soil erosion and highlights the significance of environmental conservation programs in regions with vulnerable topography.
(© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.) - References: Abdulkareem, J. H., Pradhan, B., Sulaiman, W. N. A., & Jamil, N. R. (2019). Prediction of spatial soil loss impacted by long-term land-use/land-cover change in a tropical watershed. Geoscience Frontiers, 10(2), 389–403. https://doi.org/10.1016/j.gsf.2017.10.010. (PMID: 10.1016/j.gsf.2017.10.010)
Adinarayana, J., Gopal Rao, K., Rama Krishna, N., Venkatachalam, P., & Suri, J. K. (1999). A rule-based soil erosion model for a hilly catchment. CATENA, 37(3–4), 309–318. https://doi.org/10.1016/S0341-8162(99)00023-5. (PMID: 10.1016/S0341-8162(99)00023-5)
Alewell, C., Ringeval, B., Ballabio, C., Robinson, D. A., Panagos, P., & Borrelli, P. (2020). Global phosphorus shortage will be aggravated by soil erosion. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-18326-7.
Alitane, A., Essahlaoui, A., El Hafyani, M., El Hmaidi, A., El Ouali, A., Kassou, A., et al. (2022). Water Erosion Monitoring and Prediction in Response to the Effects of Climate Change Using RUSLE and SWAT Equations: Case of R’Dom Watershed in Morocco. Land, 11(1), 93. https://doi.org/10.3390/land11010093. (PMID: 10.3390/land11010093)
Allafta, H., & Opp, C. (2022). Soil Erosion Assessment Using the RUSLE Model, Remote Sensing, and GIS in the Shatt Al-Arab Basin (Iraq-Iran). Applied Sciences (Switzerland), 12(15), 7776. https://doi.org/10.3390/app12157776. (PMID: 10.3390/app12157776)
Ashraf, A., Abuzar, M. K., Ahmad, B., Ahmad, M. M., & Hussain, Q. (2017). Modeling risk of soil erosion in high and medium rainfall zones of pothwar region, Pakistan. Proceedings of the Pakistan Academy of Sciences: Part B, 54(2), 67–77.
Aslam, M. H., & Yoshimura, K. (2017). Sediment Yield in Jhelum River Basin With and Without Climate Change Impact in Pakistan. Journal of Japan Society of Civil Engineers, Ser. B1 Hydraulic Engineering, 73(4), I_85-I_90. (PMID: 10.2208/jscejhe.73.I_85)
Aslam, B., Maqsoom, A., Shahzaib, Kazmi, Z. A., Sodangi, M., Anwar, F., et al. (2020). Effects of landscape changes on soil erosion in the built environment: Application of geospatial-based RUSLE technique. Sustainability (Switzerland), 12(15), 5898. https://doi.org/10.3390/SU12155898. (PMID: 10.3390/SU12155898)
Atta-ur-Rahman, & Khan, A. N. (2011). Analysis of flood causes and associated socio-economic damages in the Hindukush region. Natural Hazards, 59(3), 1239–1260. https://doi.org/10.1007/s11069-011-9830-8. (PMID: 10.1007/s11069-011-9830-8)
Bacha, M. S., Muhammad, M., Kılıç, Z., & Nafees, M. (2021). The dynamics of public perceptions and climate change in swat valley, khyber pakhtunkhwa Pakistan. Sustainability (Switzerland), 13(8), 1–22. https://doi.org/10.3390/su13084464. (PMID: 10.3390/su13084464)
Bangash, S. (2012). Socio-economic conditions of post-conflict swat: a critical appraisal. Tigah: A Journal of Peace and Development, 2(December), 66–79.
Bashir, S., Baig, M. A., Ashraf, M., Anwar, M. M., Bhalli, M. N., & Munawar, S. (2013). Risk assessment of soil erosion in Rawal watershed using geoinformatics techniques. Science International (Lahore), 25(3), 583–588. http://www.sci-int.com/pdf/636673602841599530.pdf.
Batista, P. V. G., Davies, J., Silva, M. L. N., & Quinton, J. N. (2019). On the evaluation of soil erosion models: Are we doing enough? Earth-Science Reviews, 197, 102898. https://doi.org/10.1016/j.earscirev.2019.102898. (PMID: 10.1016/j.earscirev.2019.102898)
Batool, S., Shirazi, S. A., & Mahmood, S. A. (2021). Appraisal of Soil Erosion through RUSLE Model and Hypsometry in Chakwal Watershed (Potwar-Pakistan). Sarhad Journal of Agriculture, 37(230), 594–606. https://login.proxy006.nclive.org/login?url= https://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=158644573&site=eds-live&scope=site.
Bazzani, F. (2013). Atlas of the natural resources evaluation in Swat Valley, Khyber Pakhtunkhwa, Islamic Republic of Pakistan. https://studylib.net/doc/18778584/adp-swat-1---atlas-of-the-natural-resources-evaluation.
Bezak, N., Mikoš, M., Borrelli, P., Alewell, C., Alvarez, P., Anache, J. A. A., et al. (2021). Soil erosion modelling: A bibliometric analysis. Environmental Research, 197(March), 111087. https://doi.org/10.1016/j.envres.2021.111087. (PMID: 10.1016/j.envres.2021.111087)
Boardman, J. (2006). Soil erosion science: Reflections on the limitations of current approaches. CATENA, 68(2–3), 73–86. https://doi.org/10.1016/j.catena.2006.03.007. (PMID: 10.1016/j.catena.2006.03.007)
Boardman, J., Shepheard, M. L., Walker, E., & Foster, I. D. L. (2009). Soil erosion and risk-assessment for on- and off-farm impacts: A test case using the Midhurst area, West Sussex UK. Journal of Environmental Management, 90(8), 2578–2588. https://doi.org/10.1016/j.jenvman.2009.01.018. (PMID: 10.1016/j.jenvman.2009.01.018)
Borrelli, P., Robinson, D. A., Panagos, P., Lugato, E., Yang, J. E., Alewell, C., et al. (2020). Land use and climate change impacts on global soil erosion by water (2015–2070). Proceedings of the National Academy of Sciences of the United States of America, 117(36), 21994–22001. https://doi.org/10.1073/pnas.2001403117. (PMID: 10.1073/pnas.2001403117)
Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C., et al. (2017). An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-02142-7.
Borrelli, P., Alewell, C., Alvarez, P., Anache, J. A. A., Baartman, J., Ballabio, C., et al. (2021). Soil erosion modelling: A global review and statistical analysis. Science of the Total Environment, 780. https://doi.org/10.1016/j.scitotenv.2021.146494.
Bucała, A., Budek, A., & Kozak, M. (2015). The impact of land use and land cover changes on soil properties and plant communities in the Gorce Mountains (Western Polish Carpathians), during the past 50 years. Zeitschrift Fur Geomorphologie, 59(June), 41–74. https://doi.org/10.1127/zfg_suppl/2015/s-59204. (PMID: 10.1127/zfg_suppl/2015/s-59204)
Choudhury, B. U., Nengzouzam, G., & Islam, A. (2022). Runoff and soil erosion in the integrated farming systems based on micro-watersheds under projected climate change scenarios and adaptation strategies in the eastern Himalayan mountain ecosystem (India). Journal of Environmental Management, 309, 114667. https://doi.org/10.1016/J.JENVMAN.2022.114667. (PMID: 10.1016/J.JENVMAN.2022.114667)
Chuenchum, P., Xu, M., & Tang, W. (2020). Estimation of soil erosion and sediment yield in the lancang-mekong river using the modified revised universal soil loss equation and GIS techniques. Water (Switzerland), 12(1), 135. https://doi.org/10.3390/w12010135. (PMID: 10.3390/w12010135)
Dahri, Z. H., Ahmad, B., Leach, J. H., & Ahmad, S. (2011). Satellite-based snowcover distribution and associated snowmelt runoff modeling in Swat River Basin of Pakistan. Proceedings of the Pakistan Academy of Sciences, 48(1), 19–32.
De Jong, S. M., Paracchini, M. L., Bertolo, F., Folving, S., Megier, J., & De Roo, A. P. J. (1999). Regional assessment of soil erosion using the distributed model SEMMED and remotely sensed data. CATENA, 37(3–4), 291–308. https://doi.org/10.1016/S0341-8162(99)00038-7. (PMID: 10.1016/S0341-8162(99)00038-7)
de Oliveira, A., Serrão, E., Silva, M. T., Ferreira, T. R., Paiva de Ataide, L. C., Assis dos Santos, C., Meiguins de Lima, A. M., et al. (2022). Impacts of land use and land cover changes on hydrological processes and sediment yield determined using the SWAT model. International Journal of Sediment Research, 37(1), 54–69. https://doi.org/10.1016/j.ijsrc.2021.04.002. (PMID: 10.1016/j.ijsrc.2021.04.002)
Doulabian, S., Shadmehri Toosi, A., Humberto Calbimonte, G., Ghasemi Tousi, E., & Alaghmand, S. (2021). Projected climate change impacts on soil erosion over Iran. Journal of Hydrology, 598(November 2020), 126432. https://doi.org/10.1016/j.jhydrol.2021.126432. (PMID: 10.1016/j.jhydrol.2021.126432)
Dqg, D., & Wkh, R. I. (2000). Environmental indicators for agriculture methods and results EXECUTIVE SUMMARY 2001. http://www.oecd.org/agr/env/indicators.htm.
Dutta, D., Das, S., Kundu, A., & Taj, A. (2015). Soil erosion risk assessment in Sanjal watershed, Jharkhand (India) using geo-informatics, RUSLE model and TRMM data. Modeling Earth Systems and Environment, 1(4), 1–9. https://doi.org/10.1007/s40808-015-0034-1. (PMID: 10.1007/s40808-015-0034-1)
FAO. (2011). The State of the World’s Land and Water Resources (SOLAW)–Managing Systems at Risk. http://www.fao.org/3/i1688e/i1688e.pdf.
FAO. (2019). Global Symposium on Soil Erosion (GSER 2019): Symposium working documents, (May), 24. https://www.fao.org/publications/card/es/c/CA4394EN/.
FAO-UNESCO. (1979). Soil map of the world: South East Asia. In Soil Map of The World: Vol. IX. FAO. https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/.
Farah, N., Khan, I. A., Maan, A. A., Shahbaz, B., & Cheema, J. M. (2019). Driving Factors of Agricultural Land Conversion at Rural- Urban Interface in Punjab. Pakistan. Journal of Agricultural Research, 57(1), 55–62. https://apply.jar.punjab.gov.pk/upload/1561448694_135_9._1354.pdf .
Farhan, Y., & Nawaiseh, S. (2015). Spatial assessment of soil erosion risk using RUSLE and GIS techniques. Environmental Earth Sciences, 74(6), 4649–4669. https://doi.org/10.1007/s12665-015-4430-7. (PMID: 10.1007/s12665-015-4430-7)
Fayas, C. M., Abeysingha, N. S., Nirmanee, K. G. S., Samaratunga, D., & Mallawatantri, A. (2019). Soil loss estimation using rusle model to prioritize erosion control in KELANI river basin in Sri Lanka. International Soil and Water Conservation Research, 7(2), 130–137. https://doi.org/10.1016/j.iswcr.2019.01.003. (PMID: 10.1016/j.iswcr.2019.01.003)
Fistikoglu, O., & Harmancioglu, N. B. (2002). Integration of GIS with USLE in assessment of soil erosion. Water Resources Management, 16(6), 447–467. https://doi.org/10.1023/A:1022282125760. (PMID: 10.1023/A:1022282125760)
Ganasri, B. P., & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS - A case study of Nethravathi Basin. Geoscience Frontiers, 7(6), 953–961. https://doi.org/10.1016/j.gsf.2015.10.007. (PMID: 10.1016/j.gsf.2015.10.007)
Gilani, H., Ahmad, A., Younes, I., & Abbas, S. (2022). Impact assessment of land cover and land use changes on soil erosion changes (2005–2015) in Pakistan. Land Degradation and Development, 33(1), 204–217. https://doi.org/10.1002/ldr.4138. (PMID: 10.1002/ldr.4138)
Gray, J., Sulla-Menashe, D., & Friedl, M. A. (2019). MODIS Land Cover Dynamics (MCD12Q2) Product. User Guide Collection 6, 6(Figure 1), 8. https://modis-land.gsfc.nasa.gov/pdf/MCD12Q2_Collection6_UserGuide.pdf .
Haris, J. (2023). Socioeconomic impacts of the Ten Billion Tree Tsunami (TBTT) plantation project on the participating communities. https://stud.epsilon.slu.se/18569/.
Hewett, C. J. M., Simpson, C., Wainwright, J., & Hudson, S. (2018). Communicating risks to infrastructure due to soil erosion: A bottom-up approach. Land Degradation and Development, 29(4), 1282–1294. https://doi.org/10.1002/ldr.2900. (PMID: 10.1002/ldr.2900)
Islam, F., Riaz, S., Ghaffar, B., Tariq, A., Shah, S. U., Nawaz, M., et al. (2022). Landslide susceptibility mapping (LSM) of Swat District, Hindu Kush Himalayan region of Pakistan, using GIS-based bivariate modeling. Frontiers in Environmental Science, 10(October), 1–18. https://doi.org/10.3389/fenvs.2022.1027423. (PMID: 10.3389/fenvs.2022.1027423)
Jha, M. K., & Paudel, R. C. (2010). Erosion Predictins By Empirical Models in a Mountainous Watershed in Nepal. Journal of Spatial Hydrology, 6(1), 1–14. http://www.spatialhydrology.com/journal/paper/2006/small_hydel/paper_josh.rar .
Kamal, A., Yingjie, M., Ali, A., & Significance, A. A. (2018). Significance of Billion Tree Tsunami Afforestation Project and Legal Developments in Forest Sector of Pakistan. International Journal of Law and Society, 1(4), 157–165. https://doi.org/10.11648/j.ijls.20180104.13. (PMID: 10.11648/j.ijls.20180104.13)
Kebede, Y. S., Endalamaw, N. T., Sinshaw, B. G., & Atinkut, H. B. (2021). Modeling soil erosion using RUSLE and GIS at watershed level in the upper beles. Ethiopia. Environmental Challenges, 2(November 2020), 100009. https://doi.org/10.1016/j.envc.2020.100009. (PMID: 10.1016/j.envc.2020.100009)
Khan, A., & Atta-Ur-rahman. (2022). Quantification of Soil Erosion by Integrating Geospatial and Revised Universal Soil Loss Equation in District Dir Lower, Pakistan. Proceedings of the Pakistan Academy of Sciences: Part B, 58(4), 17–28. https://doi.org/10.53560/PPASB(58-4)678. (PMID: 10.53560/PPASB(58-4)678)
Khan, S. R., & Khan, S. R. (2009). Assessing poverty-deforestation links: Evidence from Swat Pakistan. Ecological Economics, 68(10), 2607–2618. https://doi.org/10.1016/j.ecolecon.2009.04.018. (PMID: 10.1016/j.ecolecon.2009.04.018)
Kheir, R. B., Abdallah, C., & Khawlie, M. (2008). Assessing soil erosion in Mediterranean karst landscapes of Lebanon using remote sensing and GIS, 99, 239–254. https://doi.org/10.1016/j.enggeo.2007.11.012.
Kimberlin, L. W., & Moldenhauer, W. C. (1977). Predicting soil erosion (no. 4–77, pp. 31–42). ASAE Publication. https://www.ars.usda.gov/arsuserfiles/64080530/rusle/ah_703.pdf.
Koirala, P., Thakuri, S., Joshi, S., & Chauhan, R. (2019). Estimation of Soil Erosion in Nepal using a RUSLE modeling and geospatial tool. Geosciences (Switzerland), 9(4), 147. https://doi.org/10.3390/geosciences9040147. (PMID: 10.3390/geosciences9040147)
Kriegler, E., Neill, B. O., Hallegatte, S., Kram, T., Lempert, R., Wilbanks, T. J., Kriegler, E., Neill, B. O., Hallegatte, S., Kram, T., Moss, R., & Moss, R. H. (2013). Socio-economic scenario development for climate change analysis. HAL. https://ideas.repec.org/p/hal/ciredw/hal-00866437.html.
Lal, R. (2017). Soil erosion and global warming in India. Journal of Soil and Water Conservation, 16(4), 297. https://doi.org/10.5958/2455-7145.2017.00044.3. (PMID: 10.5958/2455-7145.2017.00044.3)
Lal, R. (2021). Soil Degradation by Erosion, 539(2001), 519–539.
Lazzari, M., Gioia, D., Piccarreta, M., Danese, M., & Lanorte, A. (2015). Sediment yield and erosion rate estimation in the mountain catchments of the Camastra artificial reservoir (Southern Italy): A comparison between different empirical methods. CATENA, 127, 323–339. https://doi.org/10.1016/j.catena.2014.11.021. (PMID: 10.1016/j.catena.2014.11.021)
Lew, R., Dobre, M., Srivastava, A., Brooks, E. S., Elliot, W. J., Robichaud, P. R., & Flanagan, D. C. (2022). WEPPcloud: An online watershed-scale hydrologic modeling tool. Part I. Model description. Journal of Hydrology, 608, 127603. https://doi.org/10.1016/j.jhydrol.2022.127603. (PMID: 10.1016/j.jhydrol.2022.127603)
Li, C., Lu, T., Wang, S., & Xu, J. (2023). Coupled Thorens and Soil Conservation Service Models for Soil Erosion Assessment in a Loess Plateau Watershed. China. Remote Sensing, 15(3), 803. https://doi.org/10.3390/rs15030803. (PMID: 10.3390/rs15030803)
Maqsoom, A., Aslam, B., Hassan, U., Kazmi, Z. A., Sodangi, M., Tufail, R. F., & Farooq, D. (2020). Geospatial assessment of soil erosion intensity and sediment yield using the Revised Universal Soil Loss Equation (RUSLE) model. ISPRS International Journal of Geo-Information, 9(6). https://doi.org/10.3390/ijgi9060356.
McCool, D. K., Brown, L. C., Foster, G. R., Mutchler, C. K., & Meyer, L. D. (1987). Revised Slope Steepness Factor for the Universal Soil Loss Equation. Transactions of the American Society of Agricultural Engineers, 30(5), 1387–1396. https://doi.org/10.13031/2013.30576. (PMID: 10.13031/2013.30576)
Meliho, M., Khattabi, A., & Mhammdi, N. (2020). Spatial assessment of soil erosion risk by integrating remote sensing and GIS techniques: a case of Tensift watershed in Morocco. Environmental Earth Sciences, 79(10). https://doi.org/10.1007/s12665-020-08955-y.
Mohammadi, S., Karimzadeh, H., & Alizadeh, M. (2018). Spatial estimation of soil erosion in Iran using RUSLE model. Iranian Journal of Ecohydrology, 5(2), 551–569. https://doi.org/10.1007/s12665-020-08955-y. (PMID: 10.1007/s12665-020-08955-y)
Moore, I. A. N. D., & Burch, G. J. (1986a). DIVISION S-6-SOIL AND WATER MANAGEMENT Physical Basis of the Length-slope Factor in the Universal Soil Loss Equation 1. Soil Conservation, 50(1986), 1294–1298.
Moore, I. D., & Burch, G. J. (1986). Modelling Erosion and Deposition: Topographic Effects. Transactions of the American Society of Agricultural Engineers, 29(6), 1624–1630. https://doi.org/10.13031/2013.30363. (PMID: 10.13031/2013.30363)
Morgan, R. P. C. (2001). A simple approach to soil loss prediction: A revised Morgan-Morgan-Finney model. CATENA, 44(4), 305–322. https://doi.org/10.1016/S0341-8162(00)00171-5. (PMID: 10.1016/S0341-8162(00)00171-5)
Morgan, R. P. C., Morgan, D. D. V., & Finney, H. J. (1984). A predictive model for the assessment of soil erosion risk. Journal of Agricultural Engineering Research, 30(C), 245–253. https://doi.org/10.1016/S0021-8634(84)80025-6. (PMID: 10.1016/S0021-8634(84)80025-6)
Morgan, R. P. C. (2005). Soil erosion and conservation. (R.P.C.Morgan, Ed.) (Third.). National Soil Resources Institute, Cranfield University.
Nasir, M. J., Alam, S., Ahmad, W., Bateni, S. M., Iqbal, J., Almazroui, M., & Ahmad, B. (2023). Geospatial soil loss risk assessment using RUSLE model: A study of Panjkora River Basin, Khyber Pakhtunkhwa Pakistan. Arabian Journal of Geosciences, 16(7), 440. https://doi.org/10.1007/s12517-023-11555-2. (PMID: 10.1007/s12517-023-11555-2)
Nearing, M. A., Polyakov, V. O., Nichols, M. H., Hernandez, M., Li, L., Zhao, Y., & Armendariz, G. (2017). Slope-velocity equilibrium and evolution of surface roughness on a stony hillslope. Hydrology and Earth System Sciences, 21(6), 3221–3229. https://doi.org/10.5194/hess-21-3221-2017. (PMID: 10.5194/hess-21-3221-2017)
Nekhay, O., Arriaza, M., & Boerboom, L. (2009). Evaluation of soil erosion risk using Analytic Network Process and GIS : A case study from Spanish mountain olive plantations q. Journal of Environmental Management, 90(10), 3091–3104. https://doi.org/10.1016/j.jenvman.2009.04.022. (PMID: 10.1016/j.jenvman.2009.04.022)
Pakistan Meteorological Department. (n.d.). https://www.pmd.gov.pk/en/ . Accessed 12 May 2023.
Pal, S. C., Chakrabortty, R., Roy, P., Chowdhuri, I., Das, B., Saha, A., & Shit, M. (2021). Changing climate and land use of 21st century influences soil erosion in India. Gondwana Research, 94, 164–185. https://doi.org/10.1016/j.gr.2021.02.021. (PMID: 10.1016/j.gr.2021.02.021)
Panagos, P., Ballabio, C., Himics, M., Scarpa, S., Matthews, F., Bogonos, M., et al. (2021). Projections of soil loss by water erosion in Europe by 2050. Environmental Science and Policy, 124(December 2020), 380–392. https://doi.org/10.1016/j.envsci.2021.07.012. (PMID: 10.1016/j.envsci.2021.07.012)
Pradhan, B., Chaudhari, A., Adinarayana, J., & Buchroithner, M. F. (2012). Soil erosion assessment and its correlation with landslide events using remote sensing data and GIS: A case study at Penang Island Malaysia. Environmental Monitoring and Assessment, 184(2), 715–727. https://doi.org/10.1007/s10661-011-1996-8. (PMID: 10.1007/s10661-011-1996-8)
Prasad, B., & Tiwari, H. L. (2022). A comparative study of soil erosion models based on GIS and remote sensing. ISH Journal of Hydraulic Engineering, 28(1), 98–102. https://doi.org/10.1080/09715010.2020.1814881. (PMID: 10.1080/09715010.2020.1814881)
Qasim, M., Hubacek, K., Termansen, M., & Fleskens, L. (2013). Modelling land use change across elevation gradients in district Swat. Pakistan. Regional Environmental Change, 13(3), 567–581. https://doi.org/10.1007/s10113-012-0395-1. (PMID: 10.1007/s10113-012-0395-1)
Report, M. (2016). THIRD party monitoring of billion trees tsunami afforestation project in Khyber Pakhtunkhwa Monitoring conducted by: January 2016 third party monitoring of the billion trees tsunami afforestation. WWF Publications. https://wwfasia.awsassets.panda.org/downloads/bttap_third_party_monitoring_report_1.pdf.
Rizeei, H. M., Saharkhiz, M. A., Pradhan, B., & Ahmad, N. (2016). Soil erosion prediction based on land cover dynamics at the Semenyih watershed in Malaysia using LTM and USLE models. Geocarto International, 31(10), 1158–1177. https://doi.org/10.1080/10106049.2015.1120354. (PMID: 10.1080/10106049.2015.1120354)
Sajjad, A., Hussain, A., Wahab, U., Adnan, S., Ali, S., Ahmad, Z., & Ali, A. (2015). Application of Remote Sensing and GIS in Forest Cover Change in Tehsil Barawal, District Dir Pakistan. American Journal of Plant Sciences, 06(09), 1501–1508. https://doi.org/10.4236/ajps.2015.69149. (PMID: 10.4236/ajps.2015.69149)
Sandeep, P., Kumar, K. C. A., & Haritha, S. (2021). Risk modelling of soil erosion in semi-arid watershed of Tamil Nadu, India using RUSLE integrated with GIS and Remote Sensing. Environmental Earth Sciences, 80(16), 1–20. https://doi.org/10.1007/s12665-021-09800-6. (PMID: 10.1007/s12665-021-09800-6)
Shafeeque, M., Sarwar, A., Basit, A., Mohamed, A. Z., Rasheed, M. W., Khan, M. U., et al. (2022). Quantifying the Impact of the Billion Tree Afforestation Project (BTAP) on the Water Yield and Sediment Load in the Tarbela Reservoir of Pakistan Using the SWAT Model. Land, 11(10), 1650. https://doi.org/10.3390/land11101650. (PMID: 10.3390/land11101650)
Shah, S. A. H. (2018). 10 Billion Tree Plantation Financing. Planning Commision of Pakistan, 1–28. https://www.pc.gov.pk/uploads/pub/1st_five_pages_of_10_billion_Tree_Plantation.pdf.
Sharpley, A. N., & Williams, J. R. (1990). EPIC: The erosion-productivity impact calculator. U.S. Department of Agriculture Technical Bulletin, (1768), 235. http://agris.fao.org/agris-search/search.do?recordID=US9403696.
Siswanto, S. Y., & Sule, M. I. S. (2019). The Impact of slope steepness and land use type on soil properties in Cirandu Sub-Sub Catchment, Citarum Watershed. IOP Conference Series: Earth and Environmental Science, 393(1), 012059. https://doi.org/10.1088/1755-1315/393/1/012059. (PMID: 10.1088/1755-1315/393/1/012059)
Swarnkar, S., Malini, A., Tripathi, S., & Sinha, R. (2018). Assessment of uncertainties in soil erosion and sediment yield estimates at ungauged basins: An application to the Garra River basin. India. Hydrology and Earth System Sciences, 22(4), 2471–2485. https://doi.org/10.5194/hess-22-2471-2018. (PMID: 10.5194/hess-22-2471-2018)
Tariq, A., Sharafi A.-A., Mahdipour H, Moradi E(2022). Agricultural Field Extraction with Deep Learning Algorithm and Satellite Imagery. Journal of the Indian Society of Remote Sensing 50(2), 417–423–2022. https://doi.org/10.1007/s12524-021-01475-7.
Terranova, O., Antronico, L., Coscarelli, R., & Iaquinta, P. (2009). Geomorphology Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS : An application model for Calabria ( southern Italy ). Geomorphology, 112(3–4), 228–245. https://doi.org/10.1016/j.geomorph.2009.06.009. (PMID: 10.1016/j.geomorph.2009.06.009)
Tongde, C., Abbas, F., Juying, J., Ijaz, S. S., Shoshan, A., Ansar, M., Hussain, Q., Azad, M., & Ahmad, A. (2021). Research article investigation of soil erosion in Pothohar Plateau of Pakistan. Pakistan Journal of Agricultural Research, 34(2), 362–371. https://doi.org/10.17582/journal.pjar/2021/34.2.362.371.
Ullah, S., Ali, A., Iqbal, M., Javid, M., & Imran, M. (2018). Geospatial assessment of soil erosion intensity and sediment yield: A case study of Potohar Region Pakistan. Environmental Earth Sciences, 77(19), 1–13. https://doi.org/10.1007/s12665-018-7867-7. (PMID: 10.1007/s12665-018-7867-7)
Ullah, Saif, Syed, N. M., Gang, T., Noor, R. S., Ahmad, S., Waqas, M. M., et al. (2022). Recent global warming as a proximate cause of deforestation and forest degradation in northern Pakistan. PLoS ONE, 17(1 January), 3–4. https://doi.org/10.1371/journal.pone.0260607. (PMID: 10.1371/journal.pone.0260607)
USGS EROS Archive - Digital Elevation - Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global | U.S. Geological Survey. (n.d.). https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1 . Accessed 12 May 2023.
Walling, Des E. (2011). Human impact on the sediment loads of Asian rivers. IAHS-AISH Publication, 349(September 2009), 37–51.
Walling, D. E. (1988). Measuring sediment yield from river basins. Soil erosion research methods, 39–73. https://doi.org/10.1201/9780203739358-3/MEASURING-SEDIMENT-YIELD-RIVER-BASINS-WALLING.
Wang, J., Lu, P., Valente, D., Petrosillo, I., Babu, S., Xu, S., et al. (2022). Analysis of soil erosion characteristics in small watershed of the loess tableland Plateau of China. Ecological Indicators, 137(March), 108765. https://doi.org/10.1016/j.ecolind.2022.108765. (PMID: 10.1016/j.ecolind.2022.108765)
Waqas, H., Lu, L., Tariq, A., Li, Q., Baqa, M. F., Xing, J., & Sajjad, A. (2021). Flash flood susceptibility assessment and zonation using an integrating analytic hierarchy process and frequency ratio model for the chitral district, khyber pakhtunkhwa, pakistan. Water (Switzerland), 13(12), 1650. https://doi.org/10.3390/w13121650. (PMID: 10.3390/w13121650)
Waseem, M., Iqbal, F., Humayun, M., Latif, M. U., Javed, T., & Leta, M. K. (2023). Applied sciences spatial assessment of soil erosion risk using RUSLE embedded in GIS environment : A case study of Jhelum River Watershed. Applied Sciences, 13, 3775. (PMID: 10.3390/app13063775)
Whittington, D. (2002). Improving the performance of contingent valuation studies in developing countries. Environmental and Resource Economics, 22(1–2), 323–367. https://doi.org/10.1023/A:1015575517927. (PMID: 10.1023/A:1015575517927)
Wiejaczka, L., Olȩdzki, J. R., Bucała-Hrabia, A., & Kijowska-Strugała, M. (2017). A spatial and temporal analysis of land use changes in two mountain valleys: With and without dam reservoir (Polish Carpathians). Quaestiones Geographicae, 36(1), 129–137. https://doi.org/10.1515/quageo-2017-0010. (PMID: 10.1515/quageo-2017-0010)
Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses - a guide to conservation planning. http://topsoil.nserl.purdue.edu/usle/AH_537.pdf.
Wuepper, D., Borrelli, P., & Finger, R. (2020). Countries and the global rate of soil erosion. Nature Sustainability, 3(1), 51–55. https://doi.org/10.1038/s41893-019-0438-4. (PMID: 10.1038/s41893-019-0438-4)
Yang, D., Kanae, S., Oki, T., Koike, T., & Musiake, K. (2003). Global potential soil erosion with reference to land use and climate changes. Hydrological Processes, 17(14), 2913–2928. https://doi.org/10.1002/hyp.1441. (PMID: 10.1002/hyp.1441)
Yesuph, A. Y., & Dagnew, A. B. (2019). Soil erosion mapping and severity analysis based on RUSLE model and local perception in the Beshillo Catchment of the Blue Nile Basin. Ethiopia. Environmental Systems Research, 8(1), 1–21. https://doi.org/10.1186/s40068-019-0145-1. (PMID: 10.1186/s40068-019-0145-1)
Zamani, A., Sharifi, A., Felegari, S., Tariq, A., & Zhao, N. (2022). Agro Climatic zoning of saffron culture in Miyaneh City by using WLC method and remote sensing data. Agriculture (Switzerland), 12(1), 1–15. https://doi.org/10.3390/agriculture12010118. (PMID: 10.3390/agriculture12010118) - Contributed Indexing: Keywords: GIS/RS; LULC change; Pakistan; RUSLE; Soil erosion; Swat
- Accession Number: 0 (Soil)
- Publication Date: Date Created: 20231213 Date Completed: 20231216 Latest Revision: 20240112
- Publication Date: 20240113
- Accession Number: 10.1007/s10661-023-12200-x
- Accession Number: 38093159
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.