Combined liver-kidney transplantation in pediatric patients.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Yi NJ;Yi NJ; Kim J; Kim J; Hong SY; Hong SY; Kang HG; Kang HG
  • Source:
    Pediatric transplantation [Pediatr Transplant] 2024 Feb; Vol. 28 (1), pp. e14666. Date of Electronic Publication: 2023 Dec 07.
  • Publication Type:
    Journal Article; Review
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Munksgaard Country of Publication: Denmark NLM ID: 9802574 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1399-3046 (Electronic) Linking ISSN: 13973142 NLM ISO Abbreviation: Pediatr Transplant Subsets: MEDLINE
    • Publication Information:
      Original Publication: Copenhagen ; Malden, MA : Munksgaard, c1997-
    • Subject Terms:
    • Abstract:
      Combined liver-kidney transplantation (CLKT) is a surgical procedure that involves transplanting both liver and kidney organs. There are two types of CLKT: simultaneous liver-kidney transplantation (smLKT) and sequential LKT (sqLKT). CLKT accounts for a small percentage of liver transplantations (LTs), particularly in pediatric cases. Nevertheless, the procedure has demonstrated excellent outcomes, with high survival rates and lower rejection rates. The main indications for CLKT in pediatric patients differ somewhat from that in adults, in which end-stage kidney disease after LT is the major indication. In children, congenital diseases are common reason for performing CLKT; the examples of such diseases include autosomal recessive polycystic kidney disease with congenital hepatic fibrosis which equally affects both organs, and primary hyperoxaluria type 1, a primary liver disease leading kidney failure. The decision between smLKT or sqLKT depends on the dominant organ failure, the specific pathophysiology, and available organ sources. However, there remain significant surgical and societal challenges surrounding CLKT. Innovations in pharmacology and genetic engineering have decreased the necessity for CLKT in early-diagnosed cases without portal hypertension or kidney replacement therapy. Nonetheless, these advancements are not universally accessible. Therefore, decision-making algorithms should be crafted, considering region-specific organ allocation systems and prevailing medical environments.
      (© 2023 Wiley Periodicals LLC.)
    • References:
      Margreiter R, Kramar R, Huber C, et al. Combined liver and kidney transplantation. Lancet. 1984;1(8385):1077-1078. doi:10.1016/s0140-6736(84)91486-7.
      Ruebner RL, Reese PP, Denburg MR, Rand EB, Abt PL, Furth SL. Risk factors for end-stage kidney disease after pediatric liver transplantation. Am J Transplant. 2012;12(12):3398-3405. doi:10.1111/j.1600-6143.2012.04270.x.
      Sharma P, Schaubel DE, Guidinger MK, Goodrich NP, Ojo AO, Merion RM. Impact of MELD-based allocation on end-stage renal disease after liver transplantation. Am J Transplant. 2011;11(11):2372-2378. doi:10.1111/j.1600-6143.2011.03703.x.
      Ekser B, Contreras AG, Andraus W, Taner T. Current status of combined liver-kidney transplantation. Int J Surg. 2020;82s:149-154. doi:10.1016/j.ijsu.2020.02.008.
      Nagai S, Suzuki Y, Kitajima T, et al. Paradigm change in liver transplantation practice after the implementation of the liver-kidney allocation policy. Liver Transpl. 2021;27(11):1563-1576. doi:10.1002/lt.26107.
      Samoylova ML, Wegermann K, Shaw BI, et al. The impact of the 2017 kidney allocation policy change on simultaneous liver-kidney utilization and outcomes. Liver Transpl. 2021;27(8):1106-1115. doi:10.1002/lt.26053.
      Sharma P. Liver-kidney: indications, patient selection, and allocation policy. Clin Liver Dis (Hoboken). 2019;13(6):165-169. doi:10.1002/cld.787.
      Engen RM, Kirmani S. Pediatric impacts of multiorgan transplant allocation policy in the United States. Pediatr Transplant. 2023;27(Suppl 1):e14253. doi:10.1111/petr.14253.
      Cantarovich M, Blydt-Hansen TD, Gill J, et al. Canadian forum on combined organ transplantation. Transplantation. 2016;100(6):1339-1348. doi:10.1097/tp.0000000000000963.
      OPTN. Ethical Principles of Pediatric Organ Allocation. Accessed September 10, 2023. https://optn.transplant.hrsa.gov/resources/ethics/ethical-principles-of-pediatric-organ-allocation/.
      Kivelä JM, Lempinen M, Holmberg C, et al. Renal function after combined liver-kidney transplantation: a longitudinal study of pediatric and adult patients. Pediatr Transplant. 2019;23(4):e13400. doi:10.1111/petr.13400.
      de la Cerda F, Jimenez WA, Gjertson DW, Venick R, Tsai E, Ettenger R. Renal graft outcome after combined liver and kidney transplantation in children: UCLA and UNOS experience. Pediatr Transplant. 2010;14(4):459-464. doi:10.1111/j.1399-3046.2009.01264.x.
      Calinescu AM, Wildhaber BE, Poncet A, Toso C, McLin VA. Outcomes of combined liver-kidney transplantation in children: analysis of the scientific registry of transplant recipients. Am J Transplant. 2014;14(12):2861-2868. doi:10.1111/ajt.12935.
      Fong TL, Bunnapradist S, Jordan SC, Selby RR, Cho YW. Analysis of the united network for organ sharing database comparing renal allografts and patient survival in combined liver-kidney transplantation with the contralateral allografts in kidney alone or kidney-pancreas transplantation. Transplantation. 2003;76(2):348-353. doi:10.1097/01.Tp.0000071204.03720.Bb.
      Grenda R, Kaliciński P. Combined and sequential liver-kidney transplantation in children. Pediatr Nephrol. 2018;33(12):2227-2237. doi:10.1007/s00467-017-3880-4.
      Ranawaka R, Dayasiri K, Gamage M. Combined liver and kidney transplantation in children and long-term outcome. World J Transplant. 2020;10(10):283-290. doi:10.5500/wjt.v10.i10.283.
      Sellarés J, de Freitas DG, Mengel M, et al. Understanding the causes of kidney transplant failure: the dominant role of antibody-mediated rejection and nonadherence. Am J Transplant. 2012;12(2):388-399. doi:10.1111/j.1600-6143.2011.03840.x.
      Sumimoto R, Kamada N. Specific suppression of allograft rejection by soluble class I antigen and complexes with monoclonal antibody. Transplantation. 1990;50(4):678-682. doi:10.1097/00007890-199010000-00029.
      Fung J, Makowka L, Tzakis A, et al. Combined liver-kidney transplantation: analysis of patients with preformed lymphocytotoxic antibodies. Transplant Proc. 1988;20(1 Suppl 1):88-91.
      Taner T, Heimbach JK, Rosen CB, Nyberg SL, Park WD, Stegall MD. Decreased chronic cellular and antibody-mediated injury in the kidney following simultaneous liver-kidney transplantation. Kidney Int. 2016;89(4):909-917. doi:10.1016/j.kint.2015.10.016.
      Taner T, Gustafson MP, Hansen MJ, et al. Donor-specific hypo-responsiveness occurs in simultaneous liver-kidney transplant recipients after the first year. Kidney Int. 2018;93(6):1465-1474. doi:10.1016/j.kint.2018.01.022.
      AbdulRahim N, Anderson L, Kotla S, et al. Lack of benefit and potential harm of induction therapy in simultaneous liver-kidney transplants. Liver Transpl. 2019;25(3):411-424. doi:10.1002/lt.25390.
      Verna EC, Farrand ED, Elnaggar AS, et al. Basiliximab induction and delayed calcineurin inhibitor initiation in liver transplant recipients with renal insufficiency. Transplantation. 2011;91(11):1254-1260. doi:10.1097/TP.0b013e318218f0f5.
      Ekser B, Kubal CA, Fridell JA, et al. Lack of benefit and potential harm of induction therapy in simultaneous liver-kidney transplants. Liver Transpl. 2019;25(4):667-668. doi:10.1002/lt.25428.
      Weeks SR, Luo X, Toman L, et al. Steroid-sparing maintenance immunosuppression is safe and effective after simultaneous liver-kidney transplantation. Clin Transplant. 2020;34(10):e14036. doi:10.1111/ctr.14036.
      Weber NK, Wiseman AC, Trotter JF. Corticosteroid elimination in simultaneous liver-kidney transplantation recipients. Clin Transplant. 2009;23(6):958-963. doi:10.1111/j.1399-0012.2009.01051.x.
      Das A, Taner T, Kim J, Emamaullee J. Crossmatch, donor-specific antibody testing, and immunosuppression in simultaneous liver and kidney transplantation: a review. Transplantation. 2021;105(12):e285-e291. doi:10.1097/tp.0000000000003694.
      Askar M, Schold JD, Eghtesad B, et al. Combined liver-kidney transplants: allosensitization and recipient outcomes. Transplantation. 2011;91(11):1286-1292. doi:10.1097/TP.0b013e3182184181.
      Piñeiro GJ, Rovira J, Montagud-Marrahí E, et al. Kidney graft outcomes in high immunological risk simultaneous liver-kidney transplants. Liver Transpl. 2020;26(4):517-527. doi:10.1002/lt.25726.
      O'Leary JG, Demetris AJ, Friedman LS, et al. The role of donor-specific HLA alloantibodies in liver transplantation. Am J Transplant. 2014;14(4):779-787. doi:10.1111/ajt.12667.
      Yazawa M, Cseprekal O, Helmick RA, et al. Association between post-transplant donor-specific antibodies and recipient outcomes in simultaneous liver-kidney transplant recipients: single-center, cohort study. Transpl Int. 2020;33(2):202-215. doi:10.1111/tri.13543.
      Grochowsky A, Gunay-Aygun M. Clinical characteristics of individual organ system disease in non-motile ciliopathies. Transl Sci Rare Dis. 2019;4(1-2):1-23. doi:10.3233/trd-190033.
      Desmet VJ. Ludwig symposium on biliary disorders-part I. Pathogenesis of ductal plate abnormalities. Mayo Clin Proc. 1998;73(1):80-89. doi:10.4065/73.1.80.
      Acevedo E, Laínez SS, Cáceres Cano PA, Vivar D. Caroli's syndrome: an early presentation. Cureus. 2020;12(10):e11029. doi:10.7759/cureus.11029.
      Ko JS, Yi NJ, Suh KS, Seo JK. Pediatric liver transplantation for fibropolycystic liver disease. Pediatr Transplant. 2012;16(2):195-200. doi:10.1111/j.1399-3046.2012.01661.x.
      Roy S, Dillon MJ, Trompeter RS, Barratt TM. Autosomal recessive polycystic kidney disease: long-term outcome of neonatal survivors. Pediatr Nephrol. 1997;11(3):302-306. doi:10.1007/s004670050281.
      Gunay-Aygun M, Font-Montgomery E, Lukose L, et al. Characteristics of congenital hepatic fibrosis in a large cohort of patients with autosomal recessive polycystic kidney disease. Gastroenterology. 2013;144(1):112-121.e2. doi:10.1053/j.gastro.2012.09.056.
      Mekahli D, van Stralen KJ, Bonthuis M, et al. Kidney versus combined kidney and liver transplantation in Young people with autosomal recessive polycystic kidney disease: data from the European Society for Pediatric Nephrology/European renal association-European dialysis and transplant (ESPN/ERA-EDTA) registry. Am J Kidney Dis. 2016;68(5):782-788. doi:10.1053/j.ajkd.2016.06.019.
      Chapal M, Debout A, Dufay A, et al. Kidney and liver transplantation in patients with autosomal recessive polycystic kidney disease: a multicentric study. Nephrol Dial Transplant. 2012;27(5):2083-2088. doi:10.1093/ndt/gfr588.
      Lei KJ, Pan CJ, Shelly LL, Liu JL, Chou JY. Identification of mutations in the gene for glucose-6-phosphatase, the enzyme deficient in glycogen storage disease type 1a. J Clin Invest. 1994;93(5):1994-1999. doi:10.1172/jci117192.
      Kishnani PS, Austin SL, Abdenur JE, et al. Diagnosis and management of glycogen storage disease type I: a practice guideline of the American College of Medical Genetics and Genomics. Genet Med. 2014;16(11):e1. doi:10.1038/gim.2014.128.
      Choi Y, Yi NJ, Ko JS, et al. Reappraisal of the role of portacaval shunting in the growth of patients with glycogen storage disease type I in the era of liver transplantation. Transplantation. 2016;100(3):585-592. doi:10.1097/tp.0000000000000884.
      Chen YT, Coleman RA, Scheinman JI, Kolbeck PC, Sidbury JB. Renal disease in type I glycogen storage disease. N Engl J Med. 1988;318(1):7-11. doi:10.1056/nejm198801073180102.
      Belingheri M, Ghio L, Sala A, et al. Combined liver-kidney transplantation in glycogen storage disease Ia: a case beyond the guidelines. Liver Transpl. 2007;13(5):762-764. doi:10.1002/lt.21147.
      Kamath BM, Baker A, Houwen R, Todorova L, Kerkar N. Systematic review: the epidemiology, natural history, and burden of Alagille syndrome. J Pediatr Gastroenterol Nutr. 2018;67(2):148-156. doi:10.1097/mpg.0000000000001958.
      Turnpenny PD, Ellard S. Alagille syndrome: pathogenesis, diagnosis and management. Eur J Hum Genet. 2012;20(3):251-257. doi:10.1038/ejhg.2011.181.
      Kamath BM, Yin W, Miller H, et al. Outcomes of liver transplantation for patients with Alagille syndrome: the studies of pediatric liver transplantation experience. Liver Transpl. 2012;18(8):940-948. doi:10.1002/lt.23437.
      McGahan RK, Tang JE, Iyer MH, Flores AS, Gorelik LA. Combined liver kidney transplant in adult patient with Alagille syndrome and pulmonary hypertension. Semin Cardiothorac Vasc Anesth. 2021;25(3):191-195. doi:10.1177/10892532211008742.
      Stoller JK, Aboussouan LS. A review of α1-antitrypsin deficiency. Am J Respir Crit Care Med. 2012;185(3):246-259. doi:10.1164/rccm.201108-1428CI.
      Miravitlles M, Dirksen A, Ferrarotti I, et al. European Respiratory Society statement: diagnosis and treatment of pulmonary disease in α(1)-antitrypsin deficiency. Eur Respir J. 2017;50(5):1700610. doi:10.1183/13993003.00610-2017.
      Greene CM, Marciniak SJ, Teckman J, et al. Author correction: α1-antitrypsin deficiency. Nat Rev Dis Primers. 2018;4(1):40. doi:10.1038/s41572-018-0043-2.
      Hussain M, Mieli-Vergani G, Mowat AP. Alpha 1-antitrypsin deficiency and liver disease: clinical presentation, diagnosis and treatment. J Inherit Metab Dis. 1991;14(4):497-511. doi:10.1007/bf01797920.
      Davis ID, Burke B, Freese D, Sharp HL, Kim Y. The pathologic spectrum of the nephropathy associated with alpha 1-antitrypsin deficiency. Hum Pathol. 1992;23(1):57-62. doi:10.1016/0046-8177(92)90012-r.
      Elzouki AN, Lindgren S, Nilsson S, Veress B, Eriksson S. Severe alpha1-antitrypsin deficiency (PiZ homozygosity) with membranoproliferative glomerulonephritis and nephrotic syndrome, reversible after orthotopic liver transplantation. J Hepatol. 1997;26(6):1403-1407. doi:10.1016/s0168-8278(97)80478-3.
      Harris PC, Torres VE. Polycystic kidney disease, autosomal dominant. In: Adam MP, Mirzaa GM, Pagon RA, et al., eds. GeneReviews(®). University of Washington; 1993.
      Yang J, Ryu H, Han M, et al. Comparison of volume-reductive therapies for massive polycystic liver disease in autosomal dominant polycystic kidney disease. Hepatol Res. 2016;46(2):183-191. doi:10.1111/hepr.12560.
      Mekeel KL, Moss AA, Reddy KS, et al. Living donor liver transplantation in polycystic liver disease. Liver Transpl. 2008;14(5):680-683. doi:10.1002/lt.21423.
      Kirchner GI, Rifai K, Cantz T, et al. Outcome and quality of life in patients with polycystic liver disease after liver or combined liver-kidney transplantation. Liver Transpl. 2006;12(8):1268-1277. doi:10.1002/lt.20780.
      Compagnon P, Metzler P, Samuel D, et al. Long-term results of combined liver-kidney transplantation for primary hyperoxaluria type 1: the French experience. Liver Transpl. 2014;20(12):1475-1485. doi:10.1002/lt.24009.
      Danpure CJ, Jennings PR. Peroxisomal alanine:glyoxylate aminotransferase deficiency in primary hyperoxaluria type I. FEBS Lett. 1986;201(1):20-24. doi:10.1016/0014-5793(86)80563-4.
      Cramer SD, Ferree PM, Lin K, Milliner DS, Holmes RP. The gene encoding hydroxypyruvate reductase (GRHPR) is mutated in patients with primary hyperoxaluria type II. Hum Mol Genet. 1999;8(11):2063-2069. doi:10.1093/hmg/8.11.2063.
      Riedel TJ, Knight J, Murray MS, Milliner DS, Holmes RP, Lowther WT. 4-Hydroxy-2-oxoglutarate aldolase inactivity in primary hyperoxaluria type 3 and glyoxylate reductase inhibition. Biochim Biophys Acta. 2012;1822(10):1544-1552. doi:10.1016/j.bbadis.2012.06.014.
      Jamieson NV. A 20-year experience of combined liver/kidney transplantation for primary hyperoxaluria (PH1): the European PH1 transplant registry experience 1984-2004. Am J Nephrol. 2005;25(3):282-289. doi:10.1159/000086359.
      Groothoff JW, Metry E, Deesker L, et al. Clinical practice recommendations for primary hyperoxaluria: an expert consensus statement from ERKNet and OxalEurope. Nat Rev Nephrol. 2023;19(3):194-211. doi:10.1038/s41581-022-00661-1.
      Metry EL, Garrelfs SF, Peters-Sengers H, et al. Long-term transplantation outcomes in patients with primary hyperoxaluria type 1 included in the European hyperoxaluria consortium (OxalEurope) registry. Kidney Int Rep. 2022;7(2):210-220. doi:10.1016/j.ekir.2021.11.006.
      Bergstralh EJ, Monico CG, Lieske JC, et al. Transplantation outcomes in primary hyperoxaluria. Am J Transplant. 2010;10(11):2493-2501. doi:10.1111/j.1600-6143.2010.03271.x.
      Devresse A, Cochat P, Godefroid N, Kanaan N. Transplantation for primary hyperoxaluria type 1: designing new strategies in the era of promising therapeutic perspectives. Kidney Int Rep. 2020;5(12):2136-2145. doi:10.1016/j.ekir.2020.09.022.
      Zsengellér ZK, Aljinovic N, Teot LA, et al. Methylmalonic acidemia: a megamitochondrial disorder affecting the kidney. Pediatr Nephrol. 2014;29(11):2139-2146. doi:10.1007/s00467-014-2847-y.
      Alkhunaizi AM, Al-Sannaa N. Renal involvement in methylmalonic aciduria. Kidney Int Rep. 2017;2(5):956-960. doi:10.1016/j.ekir.2017.04.007.
      Forny P, Hörster F, Ballhausen D, et al. Guidelines for the diagnosis and management of methylmalonic acidaemia and propionic acidaemia: first revision. J Inherit Metab Dis. 2021;44(3):566-592. doi:10.1002/jimd.12370.
      Cheong HI, Lee BS, Kang HG, et al. Attempted treatment of factor H deficiency by liver transplantation. Pediatr Nephrol. 2004;19(4):454-458. doi:10.1007/s00467-003-1371-2.
      Formeck C, Swiatecka-Urban A. Extra-renal manifestations of atypical hemolytic uremic syndrome. Pediatr Nephrol. 2019;34(8):1337-1348. doi:10.1007/s00467-018-4039-7.
      Zuber J, Le Quintrec M, Sberro-Soussan R, Loirat C, Frémeaux-Bacchi V, Legendre C. New insights into postrenal transplant hemolytic uremic syndrome. Nat Rev Nephrol. 2011;7(1):23-35. doi:10.1038/nrneph.2010.155.
      Saland JM, Ruggenenti P, Remuzzi G. Liver-kidney transplantation to cure atypical hemolytic uremic syndrome. J Am Soc Nephrol. 2009;20(5):940-949. doi:10.1681/asn.2008080906.
      Remuzzi G, Ruggenenti P, Codazzi D, et al. Combined kidney and liver transplantation for familial haemolytic uraemic syndrome. Lancet. 2002;359(9318):1671-1672. doi:10.1016/s0140-6736(02)08560-4.
      Wijnsma KL, Duineveld C, Wetzels JFM, van de Kar N. Correction to: eculizumab in atypical hemolytic uremic syndrome: strategies toward restrictive use. Pediatr Nephrol. 2019;34(4):741-742. doi:10.1007/s00467-018-4186-x.
      Fong TL, Khemichian S, Shah T, Hutchinson IV, Cho YW. Combined liver-kidney transplantation is preferable to liver transplant alone for cirrhotic patients with renal failure. Transplantation. 2012;94(4):411-416. doi:10.1097/TP.0b013e3182590d6b.
      Enestvedt CK. PRO: simultaneous liver-kidney transplantation in the current era: still the best option. Clin Liver Dis (Hoboken). 2020;16(6):266-271. doi:10.1002/cld.980.
      Ekser B, Mangus RS, Fridell W, et al. A novel approach in combined liver and kidney transplantation with long-term outcomes. Ann Surg. 2017;265(5):1000-1008. doi:10.1097/sla.0000000000001752.
      Lunsford KE, Agopian VG, Yi SG, et al. Delayed implantation of pumped kidneys decreases renal allograft futility in combined liver-kidney transplantation. Transplantation. 2020;104(8):1591-1603. doi:10.1097/tp.0000000000003040.
      Multiple Organ Transplants in the U.S. by Recipient Age. Updated August 15, 2023. Accessed August 17, 2023. https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/.
      Mazariegos GV, Perito ER, Squires JE, et al. Center use of technical variant grafts varies widely and impacts pediatric liver transplant waitlist and recipient outcomes in the United States. Liver Transpl. 2023;29(7):671-682. doi:10.1097/lvt.0000000000000091.
      Perkins JD, Dick AA, Healey PJ, et al. New evidence supporting increased use of Split liver transplantation. Transplantation. 2020;104(2):299-307. doi:10.1097/tp.0000000000002853.
      Yoon KC, Song S, Lee S, et al. Outcomes of Split liver transplantation vs living donor liver transplantation in pediatric patients: a 5-year follow-up study in Korea. Ann Transplant. 2022;27:e935682. doi:10.12659/aot.935682.
      Kitajima T, Sakamoto S, Sasaki K, et al. Impact of graft thickness reduction of left lateral segment on outcomes following pediatric living donor liver transplantation. Am J Transplant. 2018;18(9):2208-2219. doi:10.1111/ajt.14875.
      Ahn SW, Yi NJ, Kim HC, et al. Dextroplantation of left liver graft in infants. Liver Transpl. 2021;27(2):222-230. doi:10.1002/lt.25883.
      Balci D, Bingol-Kologlu M, Kirimker EO, et al. 3D-reconstruction and heterotopic implantation of reduced size monosegment or left lateral segment grafts in small infants: a new technique in pediatric living donor liver transplantation to overcome large-for-size syndrome. Surgery. 2021;170(2):617-622. doi:10.1016/j.surg.2021.04.015.
      Khan Z, Sciveres M, Salis P, et al. Combined split liver and kidney transplantation in a three-year-old child with primary hyperoxaluria type 1 and complete thrombosis of the inferior vena cava. Pediatr Transplant. 2011;15(4):E64-E70. doi:10.1111/j.1399-3046.2009.01241.x.
      Saland JM, Shneider BL, Bromberg JS, et al. Successful split liver-kidney transplant for factor H associated hemolytic uremic syndrome. Clin J Am Soc Nephrol. 2009;4(1):201-206. doi:10.2215/cjn.02170508.
      Yankol Y, Karataş C, Kanmaz T, Koçak B, Kalayoğlu M, Acarlı K. Extreme living donation: a single center simultaneous and sequential living liver-kidney donor experience with long-term outcomes under literature review. Turk J Surg. 2021;37(3):207-214. doi:10.47717/turkjsurg.2021.5387.
      Lee KG, Min SI, Ahn S, et al. Simultaneous liver, kidney transplantation: a single center experience. Korean J Transplant. 2011;25(4):270-275. doi:10.4285/jkstn.2011.25.4.270.
      Haberal M, Abbasoğlu O, Büyükpamukçu N, et al. Combined liver-kidney transplantation from a living-related donor. Transplant Proc. 1993;25(3):2211-2213.
      Hong SK, Choe S, Yi NJ, et al. Long-term survival of 10,116 Korean live liver donors. Ann Surg. 2021;274(2):375-382. doi:10.1097/sla.0000000000003752.
      Kitajima K, Ogawa Y, Miki K, et al. Longterm renal allograft survival after sequential liver-kidney transplantation from a single living donor. Liver Transpl. 2017;23(3):315-323. doi:10.1002/lt.24676.
      Kasahara M, Sakamoto S, Fukuda A, et al. Marginal parental donors for pediatric living donor liver transplantation. Curr Opin Organ Transplant. 2022;27(4):346-350. doi:10.1097/mot.0000000000000990.
      Dong C, Song Z, Meng X, et al. Successful living donor liver transplantation plus domino-auxiliary partial orthotopic liver transplantation for pediatric patients with metabolic disorders. Pediatr Surg Int. 2020;36(12):1443-1450. doi:10.1007/s00383-020-04756-3.
      Rammohan A, Reddy MS, Narasimhan G, et al. Auxiliary partial orthotopic liver transplantation for selected noncirrhotic metabolic liver disease. Liver Transpl. 2019;25(1):111-118. doi:10.1002/lt.25352.
      Vasudevan AK, Shanmugam NP, Rammohan A, Rela M. Managing recurrent portal steal in auxiliary liver transplantation for non-cirrhotic metabolic liver disease. Pediatr Transplant. 2022;26(8):e14389. doi:10.1111/petr.14389.
      Kasahara M, Hong JC, Dhawan A. Evaluation of living donors for hereditary liver disease (siblings, heterozygotes). J Hepatol. 2023;78(6):1147-1156. doi:10.1016/j.jhep.2022.10.013.
    • Contributed Indexing:
      Keywords: enzyme defect; living donor; metabolic liver disease; renal replacement therapy; sequential liver-kidney transplantation
    • Publication Date:
      Date Created: 20231207 Date Completed: 20240207 Latest Revision: 20240228
    • Publication Date:
      20240228
    • Accession Number:
      10.1111/petr.14666
    • Accession Number:
      38059323