Inflammation-induced subcutaneous neovascularization for the long-term survival of encapsulated islets without immunosuppression.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Nature Country of Publication: England NLM ID: 101696896 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2157-846X (Electronic) Linking ISSN: 2157846X NLM ISO Abbreviation: Nat Biomed Eng Subsets: MEDLINE
    • Publication Information:
      Publication: London : Springer Nature
      Original Publication: [London] : Macmillan Publishers Limited, [2016]-
    • Subject Terms:
    • Abstract:
      Cellular therapies for type-1 diabetes can leverage cell encapsulation to dispense with immunosuppression. However, encapsulated islet cells do not survive long, particularly when implanted in poorly vascularized subcutaneous sites. Here we show that the induction of neovascularization via temporary controlled inflammation through the implantation of a nylon catheter can be used to create a subcutaneous cavity that supports the transplantation and optimal function of a geometrically matching islet-encapsulation device consisting of a twisted nylon surgical thread coated with an islet-seeded alginate hydrogel. The neovascularized cavity led to the sustained reversal of diabetes, as we show in immunocompetent syngeneic, allogeneic and xenogeneic mouse models of diabetes, owing to increased oxygenation, physiological glucose responsiveness and islet survival, as indicated by a computational model of mass transport. The cavity also allowed for the in situ replacement of impaired devices, with prompt return to normoglycemia. Controlled inflammation-induced neovascularization is a scalable approach, as we show with a minipig model, and may facilitate the clinical translation of immunosuppression-free subcutaneous islet transplantation.
      (© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)
    • References:
      DiMeglio, L. A., Evans-Molina, C. & Oram, R. A. Type 1 diabetes. Lancet 391, 2449–2462 (2018). (PMID: 29916386666111910.1016/S0140-6736(18)31320-5)
      Cryer, P. E. Glycemic goals in diabetes: trade-off between glycemic control and iatrogenic hypoglycemia. Diabetes 63, 2188–2195 (2014). (PMID: 2496291510.2337/db14-0059)
      Choudhary, P. et al. Evidence-informed clinical practice recommendations for treatment of type 1 diabetes complicated by problematic hypoglycemia. Diabetes Care 38, 1016–1029 (2015). (PMID: 25998294443953210.2337/dc15-0090)
      Marfil-Garza, B. A. et al. Pancreatic islet transplantation in type 1 diabetes: 20-year experience from a single-centre cohort in Canada. Lancet Diabetes Endocrinol. 10, 519–532 (2022). (PMID: 3558875710.1016/S2213-8587(22)00114-0)
      Lemos, J. R. N. et al. Survival after islet transplantation in subjects with type 1 diabetes: twenty-year follow-up. Diabetes Care 44, e67–e68 (2021). (PMID: 33579716798542310.2337/dc20-2458)
      Lablanche, S. et al. Ten‐year outcomes of islet transplantation in patients with type 1 diabetes: data from the Swiss–French GRAGIL network. Am. J. Transplant. 21, 3725–3733 (2021). (PMID: 3396133510.1111/ajt.16637)
      Vantyghem, M.-C. et al. Ten-year outcome of islet alone or islet after kidney transplantation in type 1 diabetes: a prospective parallel-arm cohort study. Diabetes Care 42, 2042–2049 (2019). (PMID: 3161585210.2337/dc19-0401)
      Lemos, J. R. N. et al. Prolonged islet allograft function is associated with female sex in patients after islet transplantation. J. Clin. Endocrinol. Metab. 107, e973–e979 (2022). (PMID: 3472717910.1210/clinem/dgab787)
      Desai, T. & Shea, L. D. Advances in islet encapsulation technologies. Nat. Rev. Drug Discov. 16, 338–350 (2017). (PMID: 2800816910.1038/nrd.2016.232)
      Farina, M. et al. Cell encapsulation: overcoming barriers in cell transplantation in diabetes and beyond. Adv. Drug Deliv. Rev. 139, 92–115 (2019). (PMID: 2971921010.1016/j.addr.2018.04.018)
      Fuchs, S. et al. Hydrogels in emerging technologies for type 1 diabetes. Chem. Rev. 121, 11458–11526 (2020). (PMID: 3337010210.1021/acs.chemrev.0c01062)
      Scharp, D. W. & Marchetti, P. Encapsulated islets for diabetes therapy: history, current progress, and critical issues requiring solution. Adv. Drug Deliv. Rev. 67, 35–73 (2014). (PMID: 2391699210.1016/j.addr.2013.07.018)
      Orive, G. et al. Engineering a clinically translatable bioartificial pancreas to treat type I diabetes. Trends Biotechnol. 36, 445–456 (2018). (PMID: 2945593610.1016/j.tibtech.2018.01.007)
      Marfil‐Garza, B. A., Polishevska, K., Pepper, A. R. & Korbutt, G. S. Current state and evidence of cellular encapsulation strategies in type 1 diabetes. Compr. Physiol. 10, 839–878 (2020). (PMID: 3294168310.1002/cphy.c190033)
      Ramzy, A. et al. Implanted pluripotent stem-cell-derived pancreatic endoderm cells secrete glucose-responsive C-peptide in patients with type 1 diabetes. Cell Stem Cell 28, 2047–2061.e45 (2021). (PMID: 3486114610.1016/j.stem.2021.10.003)
      Shapiro, A. M. J. et al. Insulin expression and C-peptide in type 1 diabetes subjects implanted with stem cell-derived pancreatic endoderm cells in an encapsulation device. Cell. Rep. Med. 2, 100466 (2021).
      Goswami, D. et al. Design considerations for macroencapsulation devices for stem cell derived islets for the treatment of type 1 diabetes. Adv. Sci. 8, 2100820 (2021). (PMID: 10.1002/advs.202100820)
      Pileggi, A. et al. Reversal of diabetes by pancreatic islet transplantation into a subcutaneous, neovascularized device. Transplantation 81, 1318–1324 (2006). (PMID: 1669946110.1097/01.tp.0000203858.41105.88)
      Sörenby, A. K. et al. Preimplantation of an immunoprotective device can lower the curative dose of islets to that of free islet transplantation—studies in a rodent model. Transplantation 86, 364–366 (2008). (PMID: 1864550410.1097/TP.0b013e31817efc78)
      Halberstadt, C. R. et al. Subcutaneous transplantation of islets into streptozocin-induced diabetic rats. Cell Transplant. 14, 595–605 (2005). (PMID: 1635556810.3727/000000005783982792)
      Mahou, R., Zhang, D. K. Y., Vlahos, A. E. & Sefton, M. V. Injectable and inherently vascularizing semi-interpenetrating polymer network for delivering cells to the subcutaneous space. Biomaterials 131, 27–35 (2017). (PMID: 2837162510.1016/j.biomaterials.2017.03.032)
      Coindre, V. F., Carleton, M. M. & Sefton, M. V. Methacrylic acid copolymer coating enhances constructive remodeling of polypropylene mesh by increasing the vascular response. Adv. Healthc. Mater. 8, e1900667 (2019). (PMID: 3140748110.1002/adhm.201900667)
      Kawakami, Y. et al. Modified subcutaneous tissue with neovascularization is useful as the site for pancreatic islet transplantation. Cell Transplant. 9, 729–732 (2000). (PMID: 1114497410.1177/096368970000900523)
      Gu, Y. et al. Development of a new method to induce angiogenesis at subcutaneous site of streptozotocin-induced diabetic rats for islet transplantation. Cell Transplant. 10, 453–457 (2001). (PMID: 1154907110.3727/000000001783986693)
      Wang, W. et al. Reversal of diabetes in mice by xenotransplantation of a bioartificial pancreas in a prevascularized subcutaneous site. Transplantation 73, 122–129 (2002). (PMID: 1179299110.1097/00007890-200201150-00023)
      Weaver, J. D. et al. Vasculogenic hydrogel enhances islet survival, engraftment, and function in leading extrahepatic sites. Sci. Adv. 3, e1700184 (2017). (PMID: 28630926545714810.1126/sciadv.1700184)
      Song, W. et al. Engineering transferrable microvascular meshes for subcutaneous islet transplantation. Nat. Commun. 10, 4602 (2019). (PMID: 31601796678718710.1038/s41467-019-12373-5)
      Aghazadeh, Y. et al. Microvessels support engraftment and functionality of human islets and hESC-derived pancreatic progenitors in diabetes models. Cell Stem Cell 28, 1936–1949.e8 (2021). (PMID: 3448086310.1016/j.stem.2021.08.001)
      Smink, A. M. et al. The efficacy of a prevascularized, retrievable poly (D, L,-lactide-co-ε-caprolactone) subcutaneous scaffold as transplantation site for pancreatic islets. Transplantation 101, e112–e119 (2017). (PMID: 28207637722857110.1097/TP.0000000000001663)
      Stephens, C. H. et al. In situ type I oligomeric collagen macroencapsulation promotes islet longevity and function in vitro and in vivo. Am. J. Physiol. Endocrinol. Metab. 315, e650–e661 (2018). (PMID: 29894201623070510.1152/ajpendo.00073.2018)
      Yu, M. et al. Islet transplantation in the subcutaneous space achieves long-term euglycaemia in preclinical models of type 1 diabetes. Nat. Metab. 2, 1013–1020 (2020). (PMID: 32895576757284410.1038/s42255-020-0269-7)
      Kuppan, P. et al. Co‐transplantation of human adipose‐derived mesenchymal stem cells with neonatal porcine islets within a prevascularized subcutaneous space augments the xenograft function. Xenotransplantation 27, e12581 (2020). (PMID: 3193060610.1111/xen.12581)
      Barkai, U., Rotem, A. & de Vos, P. Survival of encapsulated islets: more than a membrane story. World J. Transplant. 6, 69–90 (2016). (PMID: 27011906480180610.5500/wjt.v6.i1.69)
      Coronel, M. M., Liang, J.-P., Li, Y. & Stabler, C. Oxygen generating biomaterial improves the function and efficacy of beta cells within a macroencapsulation device. Biomaterials 210, 1–11 (2019). (PMID: 31029812652713510.1016/j.biomaterials.2019.04.017)
      Wang, L.-H. et al. An inverse-breathing encapsulation system for cell delivery. Sci. Adv. 7, eabd5835 (2021). (PMID: 33990318812143410.1126/sciadv.abd5835)
      Carlsson, P.-O. et al. Transplantation of macroencapsulated human islets within the bioartificial pancreas βAir to patients with type 1 diabetes mellitus. Am. J. Transplant. 18, 1735–1744 (2018). (PMID: 29288549605559410.1111/ajt.14642)
      Ludwig, B. et al. Favorable outcome of experimental islet xenotransplantation without immunosuppression in a nonhuman primate model of diabetes. Proc. Natl Acad. Sci. USA 114, 11745–11750 (2017). (PMID: 29078330567690610.1073/pnas.1708420114)
      Ludwig, B. et al. Transplantation of human islets without immunosuppression. Proc. Natl Acad. Sci. USA 110, 19054–19058 (2013). (PMID: 24167261383971010.1073/pnas.1317561110)
      Neufeld, T. et al. The efficacy of an immunoisolating membrane system for islet xenotransplantation in minipigs. PLoS ONE 8, e70150 (2013). (PMID: 23936385373136310.1371/journal.pone.0070150)
      Evron, Y. et al. Long-term viability and function of transplanted islets macroencapsulated at high density are achieved by enhanced oxygen supply. Sci. Rep. 8, 6508 (2018). (PMID: 29695723591703610.1038/s41598-018-23862-w)
      Burnett, D. R. et al. Glucose sensing in the peritoneal space offers faster kinetics than sensing in the subcutaneous space. Diabetes 63, 2498–2505 (2014). (PMID: 24622798406633610.2337/db13-1649)
      Pepper, A. R. et al. A prevascularized subcutaneous device-less site for islet and cellular transplantation. Nat. Biotechnol. 33, 518–523 (2015). (PMID: 2589378210.1038/nbt.3211)
      An, D. et al. Designing a retrievable and scalable cell encapsulation device for potential treatment of type 1 diabetes. Proc. Natl Acad. Sci. USA 115, e263–e272 (2018). (PMID: 2927939310.1073/pnas.1708806115)
      Morris, R. M., Mortimer, T. O. & O’Neill, K. L. Cytokines: can cancer get the message? Cancers 14, 2178 (2022). (PMID: 35565306910301810.3390/cancers14092178)
      Lee, W. S., Yang, H., Chon, H. J. & Kim, C. Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity. Exp. Mol. Med. 52, 1475–1485 (2020). (PMID: 32913278808064610.1038/s12276-020-00500-y)
      Fahey, E. & Doyle, S. L. IL-1 family cytokine regulation of vascular permeability and angiogenesis. Front. Immunol. 10, 1426 (2019). (PMID: 31293586660321010.3389/fimmu.2019.01426)
      Fan, Y. et al. Interleukin-6 stimulates circulating blood-derived endothelial progenitor cell angiogenesis in vitro. J. Cereb. Blood Flow Metab. 28, 90–98 (2008). (PMID: 1751997610.1038/sj.jcbfm.9600509)
      Van Linthout, S., Miteva, K. & Tschöpe, C. Crosstalk between fibroblasts and inflammatory cells. Cardiovasc. Res. 102, 258–269 (2014). (PMID: 2472849710.1093/cvr/cvu062)
      Werner, S., Krieg, T. & Smola, H. Keratinocyte–fibroblast interactions in wound healing. J. Invest. Dermatol. 127, 998–1008 (2007). (PMID: 1743578510.1038/sj.jid.5700786)
      Briššová, M. et al. Control and measurement of permeability for design of microcapsule cell delivery system. J. Biomed. Mater. Res. 39, 61–70 (1998). (PMID: 942909710.1002/(SICI)1097-4636(199801)39:1<61::AID-JBM8>3.0.CO;2-G)
      Briššová, M. et al. Evaluation of microcapsule permeability via inverse size exclusion chromatography. Anal. Biochem. 242, 104–111 (1996). (PMID: 892397210.1006/abio.1996.0435)
      Hoesli, C. A. et al. Reversal of diabetes by βTC3 cells encapsulated in alginate beads generated by emulsion and internal gelation. J. Biomed. Mater. Res. B 100, 1017–1028 (2012). (PMID: 10.1002/jbm.b.32667)
      Pepper, A. R. et al. Diabetic rats and mice are resistant to porcine and human insulin: flawed experimental models for testing islet xenografts. Xenotransplantation 16, 502–510 (2009). (PMID: 2004205010.1111/j.1399-3089.2009.00548.x)
      Komatsu, H. et al. Oxygen environment and islet size are the primary limiting factors of isolated pancreatic islet survival. PLoS ONE 12, e0183780 (2017). (PMID: 28832685556844210.1371/journal.pone.0183780)
      Komatsu, H., Kandeel, F. & Mullen, Y. Impact of oxygen on pancreatic islet survival. Pancreas 47, 533–543 (2018). (PMID: 29621044594307110.1097/MPA.0000000000001050)
      Dolgin, E. Diabetes cell therapies take evasive action. Nat. Biotechnol. 40, 291–295 (2022). (PMID: 3521783610.1038/s41587-022-01246-w)
      Gala-Lopez, B. L. et al. Subcutaneous clinical islet transplantation in a prevascularized subcutaneous pouch-preliminary experience. CellR4 4, e2132 (2016).
      Bachul, P. et al. 307.5: modified approach allowed for improved islet allotransplantation into pre-vascularized Sernova Cell Pouch device-preliminary results of the phase I/II clinical trial at University of Chicago. Transplantation 105, S25 (2021). (PMID: 10.1097/01.tp.0000804420.88438.67)
      Colton, C. K. & Weir, G. Commentary-a hard lesson about transplanting islets into prevascularized devices. CellR4 5, e2251 (2017).
      Yang, L. et al. Regenerating hair in prevascularized tissue space formed by a controllable foreign body reaction. Adv. Funct. Mater. 31, 2007483 (2021). (PMID: 10.1002/adfm.202007483)
      Lanza, R. P. et al. Treatment of severely diabetic pancreatectomized dogs using a diffusion-based hybrid pancreas. Diabetes 41, 886–889 (1992). (PMID: 161220410.2337/diab.41.7.886)
      Lanza, R. P. et al. Successful xenotransplantation of a diffusion-based biohybrid artificial pancreas: a study using canine, bovine, and porcine islets. Transplant. Proc. 24, 669–671 (1992). (PMID: 1566475)
      Lanza, R. P., Sullivan, S. J. & Chick, W. L. Islet transplantation with immunoisolation. Diabetes 41, 1503–1510 (1992). (PMID: 144679110.2337/diab.41.12.1503)
      Lanza, R. P. et al. Pancreatic islet transplantation using membrane diffusion chambers. Tranplant. Proc. 24, 2935–2936 (1992).
      Lanza, R. P. et al. Xenotransplantation of canine, bovine, and porcine islets in diabetic rats without immunosuppression. Proc. Natl Acad. Sci. USA 88, 11100–11104 (1991). (PMID: 17630255308110.1073/pnas.88.24.11100)
      Bochenek, M. A. et al. Alginate encapsulation as long-term immune protection of allogeneic pancreatic islet cells transplanted into the omental bursa of macaques. Nat. Biomed. Eng. 2, 810–821 (2018). (PMID: 30873298641352710.1038/s41551-018-0275-1)
      Vegas, A. J. et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat. Biotechnol. 34, 345–352 (2016). (PMID: 26807527490430110.1038/nbt.3462)
      Dufrane, D., Goebbels, R.-M. & Gianello, P. Alginate macroencapsulation of pig islets allows correction of streptozotocin-induced diabetes in primates up to 6 months without immunosuppression.Transplantation 90, 1054–1062 (2010). (PMID: 2097562610.1097/TP.0b013e3181f6e267)
      Dufrane, D. et al. The influence of implantation site on the biocompatibility and survival of alginate encapsulated pig islets in rats. Biomaterials 27, 3201–3208 (2006). (PMID: 1649737310.1016/j.biomaterials.2006.01.028)
      Liu, Q. et al. Zwitterionically modified alginates mitigate cellular overgrowth for cell encapsulation. Nat. Commun. 10, 5262 (2019). (PMID: 31748525686813610.1038/s41467-019-13238-7)
      Kuo, C. K. & Ma, P. X. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials 22, 511–521 (2001). (PMID: 1121971410.1016/S0142-9612(00)00201-5)
      Pham, T. T. et al. Hydrogel coatings: surface‐triggered in situ gelation for tunable conformal hydrogel coating of therapeutic cells and biomedical devices. Adv. Funct. Mater. 31, 2010169 (2021). (PMID: 10.1002/adfm.202010169)
      Fousteri, G., Ippolito, E., Ahmed, R. & Hamad, A. R. A. Beta-cell specific autoantibodies: are they just an indicator of type 1 diabetes?. Curr. Diabetes Rev. 13, 322–329 (2017). (PMID: 27117244526667410.2174/1573399812666160427104157)
      Wang, X. et al. A nanofibrous encapsulation device for safe delivery of insulin-producing cells to treat type 1 diabetes. Sci. Transl. Med. 13, eabb4601 (2021). (PMID: 34078744856300810.1126/scitranslmed.abb4601)
      Singh, M. K. A. & Steenbergen, W. Photoacoustic-guided focused ultrasound (PAFUSion) for identifying reflection artifacts in photoacoustic imaging. Photoacoustics 3, 123–131 (2015). (PMID: 10.1016/j.pacs.2015.09.001)
      Shapiro, A. M. J., Pokrywczynska, M. & Ricordi, C. Clinical pancreatic islet transplantation. Nat. Rev. Endocrinol. 13, 268–277 (2017). (PMID: 2783438410.1038/nrendo.2016.178)
      Wu, H. et al. In situ electrochemical oxygen generation with an immunoisolation device. Ann. N. Y. Acad. Sci. 875, 105–125 (1999). (PMID: 1041556110.1111/j.1749-6632.1999.tb08497.x)
      Buchwald, P. A local glucose-and oxygen concentration-based insulin secretion model for pancreatic islets. Theor. Biol. Med. Model. 8, 20 (2011). (PMID: 21693022313845010.1186/1742-4682-8-20)
      Buchwald, P. FEM-based oxygen consumption and cell viability models for avascular pancreatic islets. Theor. Biol. Med. Model. 6, 5 (2009). (PMID: 19371422267810010.1186/1742-4682-6-5)
      Buchwald, P. et al. Glucose‐stimulated insulin release: parallel perifusion studies of free and hydrogel encapsulated human pancreatic islets. Biotechnol. Bioeng. 115, 232–245 (2018). (PMID: 2886511810.1002/bit.26442)
      Buchwald, P. et al. Quantitative assessment of islet cell products: estimating the accuracy of the existing protocol and accounting for islet size distribution. Cell Transplant. 18, 1223–1235 (2009). (PMID: 1981820910.3727/096368909X476968)
      Ernst, A. U. et al. A predictive computational platform for optimizing the design of bioartificial pancreas devices. Nat. Commun. 13, 6031 (2022). (PMID: 36229614956170710.1038/s41467-022-33760-5)
      Lyon, J. et al. Research-focused isolation of human islets from donors with and without diabetes at the Alberta Diabetes Institute IsletCore. Endocrinology 157, 560–569 (2016). (PMID: 2665356910.1210/en.2015-1562)
      Bhujbal, S. V., Paredes-Juarez, G. A., Niclou, S. P. & de Vos, P. Factors influencing the mechanical stability of alginate beads applicable for immunoisolation of mammalian cells. J. Mech. Behav. Biomed. Mater. 37, 196–208 (2014). (PMID: 2495192610.1016/j.jmbbm.2014.05.020)
    • Accession Number:
      0 (Hydrogels)
      0 (Alginates)
    • Publication Date:
      Date Created: 20231205 Date Completed: 20241017 Latest Revision: 20241017
    • Publication Date:
      20241018
    • Accession Number:
      10.1038/s41551-023-01145-8
    • Accession Number:
      38052996