Menu
×
John's Island Library
Closed
Phone: (843) 559-1945
Main Library
2 p.m. – 5 p.m.
Phone: (843) 805-6930
West Ashley Library
Closed
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed
Phone: (843) 805-6888
Village Library
Closed
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed
Phone: (843) 889-3300
Otranto Road Library
Closed
Phone: (843) 572-4094
Mt. Pleasant Library
Closed
Phone: (843) 849-6161
McClellanville Library
Closed
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed
Phone: (843) 744-2489
Hurd/St. Andrews Library
Closed
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
Closed
Phone: (843) 869-2355
Dorchester Road Library
Closed
Phone: (843) 552-6466
John L. Dart Library
Closed
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed
Phone: (843) 795-6679
Bees Ferry West Ashley Library
Closed
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Today's Hours
John's Island Library
Closed
Phone: (843) 559-1945
Main Library
2 p.m. – 5 p.m.
Phone: (843) 805-6930
West Ashley Library
Closed
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed
Phone: (843) 805-6888
Village Library
Closed
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed
Phone: (843) 889-3300
Otranto Road Library
Closed
Phone: (843) 572-4094
Mt. Pleasant Library
Closed
Phone: (843) 849-6161
McClellanville Library
Closed
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed
Phone: (843) 744-2489
Hurd/St. Andrews Library
Closed
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
Closed
Phone: (843) 869-2355
Dorchester Road Library
Closed
Phone: (843) 552-6466
John L. Dart Library
Closed
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed
Phone: (843) 795-6679
Bees Ferry West Ashley Library
Closed
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Association between protein undernutrition and diabetes: Molecular implications in the reduction of insulin secretion.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Dos Reis Araujo T;Dos Reis Araujo T; Alves BL; Alves BL; Dos Santos LMB; Dos Santos LMB; Gonçalves LM; Gonçalves LM; Carneiro EM; Carneiro EM
- Source:
Reviews in endocrine & metabolic disorders [Rev Endocr Metab Disord] 2024 Apr; Vol. 25 (2), pp. 259-278. Date of Electronic Publication: 2023 Dec 04.- Publication Type:
Journal Article; Review- Language:
English - Source:
- Additional Information
- Source: Publisher: Springer Country of Publication: Germany NLM ID: 100940588 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-2606 (Electronic) Linking ISSN: 13899155 NLM ISO Abbreviation: Rev Endocr Metab Disord Subsets: MEDLINE
- Publication Information: Publication: 2005-: Heidelberg : Springer
Original Publication: Boston : Kluwer Academic Publishers, c2000- - Subject Terms:
- Abstract: Undernutrition is still a recurring nutritional problem in low and middle-income countries. It is directly associated with the social and economic sphere, but it can also negatively impact the health of the population. In this sense, it is believed that undernourished individuals may be more susceptible to the development of non-communicable diseases, such as diabetes mellitus, throughout life. This hypothesis was postulated and confirmed until today by several studies that demonstrate that experimental models submitted to protein undernutrition present alterations in glycemic homeostasis linked, in part, to the reduction of insulin secretion. Therefore, understanding the changes that lead to a reduction in the secretion of this hormone is essential to prevent the development of diabetes in undernourished individuals. This narrative review aims to describe the main molecular changes already characterized in pancreatic β cells that will contribute to the reduction of insulin secretion in protein undernutrition. So, it will provide new perspectives and targets for postulation and action of therapeutic strategies to improve glycemic homeostasis during this nutritional deficiency.
(© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.) - References: Sobotka L, Forbes A. Basics in clinical nutrition. Galen, Prague. 2019. ISBN 978-80-7492-427-9.
Wells JC, Sawaya AL, Wibaek R, et al. The double burden of malnutrition: aetiological pathways and consequences for health. Lancet. 2020;395(10217):75–88. https://doi.org/10.1016/S0140-6736(19)32472-9 . (PMID: 10.1016/S0140-6736(19)32472-931852605)
Boah M, Azupogo F, Amporfro DA, Abada LA. The epidemiology of undernutrition and its determinants in children under five years in Ghana. PLoS ONE. 2019;14(7):1–23. https://doi.org/10.1371/journal.pone.0219665 . (PMID: 10.1371/journal.pone.0219665)
WHO. Obesity and overweight. World Heal Organ. Published online 2020. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight . Accessed on 15 Apr 2023.
Headey D, Heidkamp R, Osendarp S, et al. Impacts of COVID-19 on childhood malnutrition and nutrition-related mortality. Lancet. 2020;396(10250):519–21. https://doi.org/10.1016/S0140-6736(20)31647-0 . (PMID: 10.1016/S0140-6736(20)31647-0327307437384798)
Zemrani B, Gehri M, Masserey E, Knob C, Pellaton R. A hidden side of the COVID-19 pandemic in children: the double burden of undernutrition and overnutrition. Int J Equity Health. 2021;20(1):1–4. https://doi.org/10.1186/s12939-021-01390-w . (PMID: 10.1186/s12939-021-01390-w)
Littlejohn P, Finlay BB. When a pandemic and an epidemic collide: COVID-19, gut microbiota, and the double burden of malnutrition. BMC Med. 2021;19(1):1–8. https://doi.org/10.1186/s12916-021-01910-z . (PMID: 10.1186/s12916-021-01910-z)
Roseboom TJ. Epidemiological evidence for the developmental origins of health and disease: Effects of prenatal undernutrition in humans. J Endocrinol. 2019;242(1):T135–44. https://doi.org/10.1530/JOE-18-0683 . (PMID: 10.1530/JOE-18-068331207580)
Bautista CJ, Bautista RJ, Montaño S, et al. Effects of maternal protein restriction during pregnancy and lactation on milk composition and offspring development. Br J Nutr. 2019;122(2):141–51. https://doi.org/10.1017/S0007114519001120 . (PMID: 10.1017/S000711451900112031345278)
Forrester TE, Badaloo AV, Boyne MS, et al. Prenatal factors contribute to the emergence of kwashiorkor or marasmus in severe undernutrition: Evidence for the predictive adaptation model. PLoS ONE. 2012;7(4):8–11. https://doi.org/10.1371/journal.pone.0035907 . (PMID: 10.1371/journal.pone.0035907)
Vaag AA, Grunnet LG, Arora GP, Brøns C. The thrifty phenotype hypothesis revisited. Diabetologia. 2012;55(8):2085–8. https://doi.org/10.1007/s00125-012-2589-y . (PMID: 10.1007/s00125-012-2589-y226439333390698)
Hales CN, Barker DJP. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Int J Epidemiol. 2013;42(5):1215–22. https://doi.org/10.1093/ije/dyt133 . (PMID: 10.1093/ije/dyt13324159065)
Nikolaus Cassandra, Luciana HE, Anna Z-K, Ka SI. Risk of food insecurity in youg adulthood and logitudinal change in cardiometabolic Health: Evidence from the National Longitudinal Study of Adolescent to Adult Health. J Nutr. Published online. 2022. https://doi.org/10.1093/jn/nxac0055 .
Dos Reis Araujo T, Muniz MRR, Alves BL, Dos Santos LMB, Bonfim MF, da Silva Junior JA, Vettorazzi JF, Zoppi CC, Carneiro EM. Tauroursodeoxycholic acid improves glucose tolerance and reduces adiposity in normal protein and malnourished mice fed a high-fat diet. Food Res Int. 2022 Jun;156:111331. https://doi.org/10.1016/j.foodres.2022.111331 . Epub 2022 May 6. PMID: 35651081.
Dalvi PS, Yang S, Swain N, et al. Long-term metabolic effects of malnutrition: Liver steatosis and insulin resistance following early-life protein restriction. PLoS ONE. 2018;13(7):1–22. https://doi.org/10.1371/journal.pone.0199916 . (PMID: 10.1371/journal.pone.0199916)
Cappelli APG, Zoppi CC, Silveira LR, et al. Reduced glucose-induced insulin secretion in low-protein-fed rats is associated with altered pancreatic islets redox status. J Cell Physiol. 2018;233(1):486–96. https://doi.org/10.1002/jcp.25908 . (PMID: 10.1002/jcp.2590828370189)
Vaiserman A, Lushchak O. Prenatal malnutrition-induced epigenetic dysregulation as a risk factor for type 2 diabetes. Int J Genomics. 2019;2019. https://doi.org/10.1155/2019/3821409 .
Filteau S, Praygod G, Rehman AM, et al. Prior undernutrition and insulin production several years later in Tanzanian adults. Am J Clin Nutr. 2021;113(6):1600–8. https://doi.org/10.1093/ajcn/nqaa438 . (PMID: 10.1093/ajcn/nqaa438337400348168356)
Delghingaro-Augusto V, Ferreira F, Bordin S, et al. A low protein diet alters gene expression in rat pancreatic islets. J Nutr. 2004;134(2):321–7. https://doi.org/10.1093/jn/134.2.321 . (PMID: 10.1093/jn/134.2.32114747667)
De Rooij SR, Painter RC, Phillips DIW, et al. Impaired insulin secretion after prenatal exposure to the Dutch famine. Diabetes Care. 2006;29(8):1897–901. https://doi.org/10.2337/dc06-0460 . (PMID: 10.2337/dc06-046016873799)
Ferreira F, Barbosa HCL, Stoppiglia LF, et al. Decreased insulin secretion in islets from rats fed a low protein diet is associated with a reduced PKAα expression. J Nutr. 2004;134(1):63–7. https://doi.org/10.1093/jn/134.1.63 . (PMID: 10.1093/jn/134.1.6314704294)
Filiputti E, Ferreira F, Souza KLA, et al. Impaired insulin secretion and decreased expression of the nutritionally responsive ribosomal kinase protein S6K–1 in pancreatic islets from malnourished rats. Life Sci. 2008;82(9–10):542–8. https://doi.org/10.1016/j.lfs.2007.12.012 . (PMID: 10.1016/j.lfs.2007.12.01218234235)
de Oliveira Lira A, de Brito Alves JL, Fernandes MP, et al. Maternal low protein diet induces persistent expression changes in metabolic genes in male rats. World J Diabetes. 2020;11(5):182–92. https://doi.org/10.4239/wjd.v11.i5.182 . (PMID: 10.4239/wjd.v11.i5.182324774547243488)
Leite NC, De Paula F, Borck PC, et al. Protein malnutrition potentiates the amplifying pathway of insulin secretion in adult obese mice. Sci Rep. 2016;6(August):1–9. https://doi.org/10.1038/srep33464 . (PMID: 10.1038/srep33464)
Alves BL, Araújo TD, Guimarães DS, Zoppi CC, Figueiredo MS, Carneiro EM. Amino acid restriction alters survival mechanisms in pancreatic beta cells: possible role of the PI3K/Akt pathway. Eur J Nutr. 2021;60(7):3947–57. https://doi.org/10.1007/s00394-021-02568-2 . (PMID: 10.1007/s00394-021-02568-2339130128081284)
Mateus Gonçalves L, Vettorazzi JF, Vanzela EC, et al. Amino acid restriction increases β-cell death under challenging conditions. J Cell Physiol. 2019;234(10):16679–84. https://doi.org/10.1002/jcp.28389 . (PMID: 10.1002/jcp.2838930815898)
Batista TM, Ribeiro RA, da Silva PMR, et al. Taurine supplementation improves liver glucose control in normal protein and malnourished mice fed a high-fat diet. Mol Nutr Food Res. 2013;57(3):423–34. https://doi.org/10.1002/mnfr.201200345 . (PMID: 10.1002/mnfr.20120034523280999)
Arantes VC, Teixeira VPA, Reis MAB, et al. Expression of PDX-1 is reduced in pancreatic islets from pups of rat dams fed a low protein diet during gestation and lactation. J Nutr. 2002;132(10):3030–5. https://doi.org/10.1093/jn/131.10.3030 . (PMID: 10.1093/jn/131.10.303012368391)
Marroquí L, Batista TM, Gonzalez A, et al. Functional and structural adaptations in the pancreatic α-cell and changes in glucagon signaling during protein malnutrition. Endocrinology. 2012;153(4):1663–72. https://doi.org/10.1210/en.2011-1623 . (PMID: 10.1210/en.2011-162322334714)
Garofano A, Czernichow P, Brøant B, Inserm U, Debrø HR. Beta-cell mass and proliferation following late fetal and early postnatal malnutrition in the rat. Published online. 1998:1114–20. Accessed on 12 Apr 2023.
Rafacho A, Giozzet VAG, Boschero AC, et al. Reduced pancreatic β-cell mass is associated with decreased FoxO1 and Erk1/2 protein phosphorylation in low-protein malnourished rats. Brazilian J Med Biol Res. 2009;42(10):935–41. https://doi.org/10.1590/S0100-879X2009001000010 . (PMID: 10.1590/S0100-879X2009001000010)
Guizoni DM, Freitas IN, Victorio JA, et al. Taurine treatment reverses protein malnutrition-induced endothelial dysfunction of the pancreatic vasculature: The role of hydrogen sulfide. Metabolism. 2021;116: 154701. https://doi.org/10.1016/j.metabol.2021.154701 . (PMID: 10.1016/j.metabol.2021.15470133417894)
Snoeck A, Remacle C, Reusens B, Hoet JJ. Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol Neonate. 1990;57:107–8. https://doi.org/10.1159/000243170 . (PMID: 10.1159/0002431702178691)
Da Silva PMR, Batista TM, Ribeiro RA, Zoppi CC, Boschero AC, Carneiro EM. Decreased insulin secretion in islets from protein malnourished rats is associated with impaired glutamate dehydrogenase function: Effect of leucine supplementation. Metabolism. 2012;61(5):721–32. https://doi.org/10.1016/j.metabol.2011.09.012 . (PMID: 10.1016/j.metabol.2011.09.01222078937)
Skelin Klemen M, Dolenšek J, Slak Rupnik M, Stožer A. The triggering pathway to insulin secretion: Functional similarities and differences between the human and the mouse β cells and their translational relevance. Islets. 2017;9(6):109–39. https://doi.org/10.1080/19382014.2017.1342022 . (PMID: 10.1080/19382014.2017.1342022286623665710702)
Shirakawa J, Terauchi Y. Newer perspective on the coupling between glucose-mediated signaling and β-cell functionality. Endocr J. 2020;67(1):1–8. https://doi.org/10.1507/endocrj.EJ19-0335 . (PMID: 10.1507/endocrj.EJ19-033531694991)
MacDonald PE, Joseph JW, Rorsman P. Glucose-sensing mechanisms in pancreatic β-cells. Philos Trans R Soc B Biol Sci. 2005;360(1464):2211–25. https://doi.org/10.1098/rstb.2005.1762 . (PMID: 10.1098/rstb.2005.1762)
Rorsman P, Ashcroft FM. Pancreatic β-cell electrical activity and insulin secretion: Of mice and men. Physiol Rev. 2018;98(1):117–214. https://doi.org/10.1152/physrev.00008.2017 . (PMID: 10.1152/physrev.00008.201729212789)
Branco RCS, Camargo RL, Batista TM, et al. Protein malnutrition blunts the increment of taurine transporter expression by a high-fat diet and impairs taurine reestablishment of insulin secretion. FASEB J. 2017;31(9):4078–87. https://doi.org/10.1096/fj.201600326RRR . (PMID: 10.1096/fj.201600326RRR28572444)
Reis MAB, Carneiro EM, Mello MAR, Boschero AC, Saad MJA, Velloso LA. Glucose-induced insulin secretion is impaired and insulin-induced phosphorylation of the insulin receptor and insulin receptor substrate-1 are increased in protein-deficient rats. J Nutr. 1997;127(3):403–10. https://doi.org/10.1093/jn/127.3.403 . (PMID: 10.1093/jn/127.3.4039082023)
De Fátima I, Souza D, Ignácio-Souza LM, Sílvia SR, et al. A low-protein diet during pregnancy alters glucose metabolism and insulin secretion. Cell Biochem Funct. 2012;30(2):114–21. https://doi.org/10.1002/cbf.1824 . (PMID: 10.1002/cbf.1824)
Soriano S, Gonzalez A, Marroquí L, et al. Reduced insulin secretion in protein malnourished mice is associated with multiple changes in the β-cell stimulus-secretion coupling. Endocrinology. 2010;151(8):3543–54. https://doi.org/10.1210/en.2010-0008 . (PMID: 10.1210/en.2010-000820555033)
de Barros Reis MA, Arantes VC, Cunha DA, et al. Increased L-CPT-1 activity and altered gene expression in pancreatic islets of malnourished adult rats: a possible relationship between elevated free fatty acid levels and impaired insulin secretion. J Nutr Biochem. 2008;19(2):85–90. https://doi.org/10.1016/j.jnutbio.2007.01.005 . (PMID: 10.1016/j.jnutbio.2007.01.00517531461)
Torres N, Noriega L, Tovar AR. Chapter 9 nutrient modulation of insulin secretion. Vitam Horm. 2009;80(C):217–44. https://doi.org/10.1016/S0083-6729(08)00609-2 . (PMID: 10.1016/S0083-6729(08)00609-219251040)
Fu Z, R Gilbert E, Liu D. Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes. Curr Diabetes Rev. 2012;9(1):25–53. https://doi.org/10.2174/15733998130104 . (PMID: 10.2174/15733998130104)
Newsholme P, Cruzat V, Arfuso F, Keane K. Nutrient regulation of insulin secretion and action. J Endocrinol. 2014;221(3). https://doi.org/10.1530/JOE-13-0616 .
Gao H, Ho E, Balakrishnan M, Yechoor V, Yallampalli C. Decreased insulin secretion in pregnant rats fed a low protein diet. Biol Reprod. 2017;97(4):627–35. https://doi.org/10.1093/biolre/iox100 . (PMID: 10.1093/biolre/iox100290250469630396)
Vettorazzi JF, Ribeiro RA, Santos-Silva JC, et al. Taurine supplementation increases KATP channel protein content, improving Ca2+ handling and insulin secretion in islets from malnourished mice fed on a high-fat diet. Amino Acids. 2014;46(9):2123–36. https://doi.org/10.1007/s00726-014-1763-6 . (PMID: 10.1007/s00726-014-1763-624866813)
Bhaswant M, Poudyal H, Brown L. Mechanisms of enhanced insulin secretion and sensitivity with n-3 unsaturated fatty acids. J Nutr Biochem. 2015;26(6):571–84. https://doi.org/10.1016/j.jnutbio.2015.02.001 . (PMID: 10.1016/j.jnutbio.2015.02.00125841249)
Latorraca MQ, Carneiro EM, Mello MAR BA. Modulation From, of insulin secretion by fatty acids in pancreatic islets and, malnourished rats [abstract]. In: IV Paulista Congress of Diabetes Metabolism; PT 099. 2000:53. Accessed on 14 Mar 2023.
Fex M, Nicholas LM, Vishnu N, et al. The pathogenetic role of β-cell mitochondria in type 2 diabetes. J Endocrinol. 2018;236(3):R145–9. https://doi.org/10.1530/JOE-17-0367 . (PMID: 10.1530/JOE-17-036729431147)
Maassen JA, ’T Hart LM, Van Essen E, et al. Mitochondrial diabetes: Molecular mechanisms and clinical presentation. Diabetes. 2004;53(SUPPL. 1):103–9. https://doi.org/10.2337/diabetes.53.2007.s103 . (PMID: 10.2337/diabetes.53.2007.s103)
Wollheim CB, Maechler P. β-cell mitochondria and insulin secretion: Messenger role of nucleotides and metabolites. Diabetes. 2002;51(SUPPL.):37–42. https://doi.org/10.2337/diabetes.51.2007.s37 . (PMID: 10.2337/diabetes.51.2007.s37)
Wiederkehr A, Wollheim CB. Minireview: Implication of mitochondria in insulin secretion and action. Endocrinology. 2006;147(6):2643–9. https://doi.org/10.1210/en.2006-0057 . (PMID: 10.1210/en.2006-005716556766)
Lenzen S. The pancreatic beta cell: an intricate relation between anatomical structure, the signalling mechanism of glucose-induced insulin secretion, the low antioxidative defence, the high vulnerability and sensitivity to diabetic stress. ChemTexts. 2021;7(2):1–6. https://doi.org/10.1007/s40828-021-00140-3 . (PMID: 10.1007/s40828-021-00140-3)
Park HK, Jin CJ, Cho YM, et al. Changes of mitochondrial DNA content in the male offspring of protein-malnourished rats. Ann N Y Acad Sci. 2004;1011:205–16. https://doi.org/10.1196/annals.1293.021 . (PMID: 10.1196/annals.1293.02115126298)
Rasschaert J, Reusens B, Dahri S, Sener A, Remacle C, Hoet JJ, Malaisse WJ. Impaired activity of rat pancreatic islet mitochondrial glycerophosphate dehydrogenase in protein malnutrition. Endocrinology. 1995;136:2631–4. https://doi.org/10.1210/endo.136.6.7750486 . (PMID: 10.1210/endo.136.6.77504867750486)
Schwarz DS, Blower MD. The endoplasmic reticulum: Structure, function and response to cellular signaling. Cell Mol Life Sci. 2016;73(1):79–94. https://doi.org/10.1007/s00018-015-2052-6 . (PMID: 10.1007/s00018-015-2052-626433683)
Ozcan L, Ergin AS, Lu A, et al. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab. 2009;9(1):35–51. https://doi.org/10.1016/j.cmet.2008.12.004 . (PMID: 10.1016/j.cmet.2008.12.00419117545)
Bravo R, Parra V, Gatica D, Rodriguez AE, Torrealba N, Paredes F, Wang ZV, Zorzano A, Hill JA, Jaimovich E, Quest AF, Lavandero S. Endoplasmic reticulum and the unfolded protein response: dynamics and metabolic integration. Int Rev Cell Mol Biol. 2013;301:215–90. https://doi.org/10.1016/B978-0-12-407704-1.00005-1 . PMID: 23317820; PMCID: PMC3666557.
Halliday M, Mallucci GR. Review: Modulating the unfolded protein response to prevent neurodegeneration and enhance memory. Neuropathol Appl Neurobiol. 2015;41(4):414–27. https://doi.org/10.1111/nan.12211 . (PMID: 10.1111/nan.12211255562985053297)
Boyce M, Yuan J. Cellular response to endoplasmic reticulum stress: A matter of life or death. Cell Death Differ. 2006;13(3):363–73. https://doi.org/10.1038/sj.cdd.4401817 . (PMID: 10.1038/sj.cdd.440181716397583)
Alejandro EU, Gregg B, Blandino-Rosano M, Cras-Méneur C, Bernal-Mizrachi E. Natural history of β-cell adaptation and failure in type 2 diabetes. Mol Aspects Med. 2015;42(734):19–41. https://doi.org/10.1016/j.mam.2014.12.002 . (PMID: 10.1016/j.mam.2014.12.00225542976)
Petrik J, Reusens B, Arany E, et al. A low protein diet alters the balance of islet cell replication and apoptosis in the fetal and neonatal rat and is associated with a reduced pancreatic expression of insulin-like growth factor-II. Endocrinology. 1999;140(10):4861–73. https://doi.org/10.1210/endo.140.10.7042 . (PMID: 10.1210/endo.140.10.704210499546)
Yoshizawa T, Hinoi E, Dae YJ, et al. The transcription factor ATF4 regulates glucose metabolism in mice through its expression in osteoblasts. J Clin Invest. 2009;119(9):2807–17. https://doi.org/10.1172/JCI39366 . (PMID: 10.1172/JCI39366197268722735903)
Liew CW, Bochenski J, Kawamori D, et al. The pseudokinase tribbles homolog 3 interacts with ATF4 to negatively regulate insulin exocytosis in human and mouse β cells. J Clin Invest. 2010;120(8):2876–88. https://doi.org/10.1172/JCI36849 . (PMID: 10.1172/JCI36849205924692912176)
Batista TM, da Silva PM, Amaral AG, Ribeiro RA, Boschero AC, Carneiro EM. Taurine supplementation restores insulin secretion and reduces ER stress markers in protein-malnourished mice. Adv Exp Med Biol. 2013;773:129–39. https://doi.org/10.1007/978-1-4614-6093-0_14 . (PMID: 10.1007/978-1-4614-6093-0_14)
Liu X, Guo Y, Wang J, Zhu L, Gao L. Dysregulation in the unfolded protein response in the FGR rat pancreas. Int J Endocrinol. 2020;2020. https://doi.org/10.1155/2020/5759182 .
Bratanova-Tochkova TK, Cheng H, Daniel S, et al. Triggering and augmentation mechanisms, granule pools, and biphasic insulin secretion. Diabetes. 2002;51(SUPPL.):12–5. https://doi.org/10.2337/diabetes.51.2007.s83 . (PMID: 10.2337/diabetes.51.2007.s83)
Velasco M, Díaz-García CM, Larqúe C, Hiriart M. Modulation of ionic channels and insulin secretion by drugs and hormones in pancreatic beta cells. Mol Pharmacol. 2016;90(3):341–57. https://doi.org/10.1124/mol.116.103861 . (PMID: 10.1124/mol.116.10386127436126)
Satin LS, Zhang Q, Rorsman P. “Take Me to Your Leader”: An electrophysiological appraisal of the role of hub cells in pancreatic islets. Diabetes. 2020;69(5):830–6. https://doi.org/10.2337/dbi19-0012 . (PMID: 10.2337/dbi19-0012323128997171959)
Becker A, Wardas B, Salah H, Amini M, Fecher-Trost C, Sen Q, Martus D, Beck A, Philipp SE, Flockerzi V, Belkacemi A. Cavβ3 Regulates Ca2+ signaling and insulin expression in pancreatic β-cells in a cell-autonomous manner. Diabetes. 2021 Nov;70(11):2532–44. https://doi.org/10.2337/db21-0078 . Epub 2021 Aug 23. PMID: 34426509; PMCID: PMC8564405.
Yang SN, Berggren PO. The role of voltage-gated calcium channels in pancreatic beta-cell physiology and pathophysiology. Endocr Rev. 2006 Oct;27(6):621–76. https://doi.org/10.1210/er.2005-0888 . Epub 2006 Jul 25. PMID: 16868246.
Amaral AG, Rafacho A, De Oliveira CA, et al. Leucine supplementation augments insulin secretion in pancreatic islets of malnourished mice. Pancreas. 2010;39(6):847–55. https://doi.org/10.1097/MPA.0b013e3181d37210 . (PMID: 10.1097/MPA.0b013e3181d3721020697208)
de Siqueira KC, de Lima FM, Lima FS, et al. miR-124a expression contributes to the monophasic pattern of insulin secretion in islets from pregnant rats submitted to a low-protein diet. Eur J Nutr. 2018;57(4):1471–83. https://doi.org/10.1007/s00394-017-1425-z . (PMID: 10.1007/s00394-017-1425-z28314963)
Gaisano HY. Recent new insights into the role of SNARE and associated proteins in insulin granule exocytosis. Diabetes Obes Metab. 2017;19(May):115–23. https://doi.org/10.1111/dom.13001 . (PMID: 10.1111/dom.1300128880475)
Mears D. Regulation of insulin secretion in islets of Langerhans by Ca2+ channels. J Membr Biol. 2004;200(2):57–66. https://doi.org/10.1007/s00232-004-0692-9 . (PMID: 10.1007/s00232-004-0692-915520904)
Batista TM, Ribeiro RA, Amaral AG, de Oliveira CAM, Boschero AC, Carneiro EM. Taurine supplementation restores glucose and carbachol-induced insulin secretion in islets from low-protein diet rats: Involvement of Ach-M3R, Synt 1 and SNAP-25 proteins. J Nutr Biochem. 2012;23(3):306–12. https://doi.org/10.1016/j.jnutbio.2010.12.012 . (PMID: 10.1016/j.jnutbio.2010.12.01221543213)
Borck PC, Batista TM, Vettorazzi JF, et al. Protein malnutrition after weaning disrupts peripheral clock and daily insulin secretion in mice. J Nutr Biochem. 2017;50:54–65. https://doi.org/10.1016/j.jnutbio.2017.08.013 . (PMID: 10.1016/j.jnutbio.2017.08.01329032081)
Rashighi M, Harris JE. Mechanisms of the Amplifying Pathway of Insulin Secretion in the β Cell. Physiol Behav. 2017;176(3):139–48. https://doi.org/10.1016/j.pharmthera.2017.05.003.Mechanisms . (PMID: 10.1016/j.pharmthera.2017.05.003.Mechanisms)
Komatsu M, Takei M, Ishii H, Sato Y. Glucose-stimulated insulin secretion: A newer perspective. J Diabetes Investig. 2013;4(6):511–6. https://doi.org/10.1111/jdi.12094 . (PMID: 10.1111/jdi.12094248437024020243)
Ashcroft FM. ATP-sensitive potassium channelopathies : Focus on insulin secretion find the latest version: Review series ATP-sensitive potassium channelopathies: Focus on insulin secretion. J Clin Invest. 2005;115(8):2047–58. https://doi.org/10.1172/JCI25495.in . (PMID: 10.1172/JCI25495.in160750461180549)
Henry WL. Perspectives in diabetes. J Natl Med Assoc. 1962;54(12):476–8. (PMID: 139065572642293)
Moullé VS. Autonomic control of pancreatic beta cells: What is known on the regulation of insulin secretion and beta-cell proliferation in rodents and humans. Peptides. 2022;148(September 2021). https://doi.org/10.1016/j.peptides.2021.170709 .
Meloni AR, Deyoung MB, Lowe C, Parkes DG. GLP-1 receptor activated insulin secretion from pancreatic β-cells: Mechanism and glucose dependence. Diabetes Obes Metab. 2013;15(1):15–27. https://doi.org/10.1111/j.1463-1326.2012.01663.x . (PMID: 10.1111/j.1463-1326.2012.01663.x22776039)
De Freitas Mathias PC, Miranda GDS, Barella LF, et al. Cholinergic-pathway-weakness-associated pancreatic islet dysfunction: A low-protein-diet imprint effect on weaned rat offspring. J Dev Orig Health Dis. 2020;11(5):484–91. https://doi.org/10.1017/S2040174420000215 . (PMID: 10.1017/S2040174420000215)
Ferreira F, Filiputti E, Arantes VC, et al. Decreased cholinergic stimulation of insulin secretion by islets from rats fed a low protein diet is associated with reduced protein kinase Cα expression. J Nutr. 2003;133(3):695–9. https://doi.org/10.1093/jn/133.3.695 . (PMID: 10.1093/jn/133.3.69512612139)
da Silva Lippo BR, Batista TM, de Rezende LF, et al. Low-protein diet disrupts the crosstalk between the PKA and PKC signaling pathways in isolated pancreatic islets. J Nutr Biochem. 2015;26(5):556–62. https://doi.org/10.1016/j.jnutbio.2014.12.010 . (PMID: 10.1016/j.jnutbio.2014.12.010)
Milanski M, Arantes VC, Ferreira F, et al. Low-protein diets reduce PKAα expression in islets from pregnant rats. J Nutr. 2005;135(8):1873–8. https://doi.org/10.1093/jn/135.8.1873 . (PMID: 10.1093/jn/135.8.187316046711)
Regina S, Reis DL, De CAM. Nutritional recovery from low protein diet during pregnancydoes not restore the kinetics of insulin secretion and Ca 2+ or alterations in the cAMP/PKA and PLC/PKC pathways in islets from adult rats Running tittle: Nutritional recovery and insulin secretio. Published online. 2009:1–42. Accessed on 15 Apr 2023.
Martins IP, de Oliveira JC, Pavanello A, et al. Protein-restriction diet during the suckling phase programs rat metabolism against obesity and insulin resistance exacerbation induced by a high-fat diet in adulthood. J Nutr Biochem. 2018;57:153–61. https://doi.org/10.1016/j.jnutbio.2018.03.017 . (PMID: 10.1016/j.jnutbio.2018.03.01729730509)
Leon-Quinto T, Magnan C, Portha B. Altered activity of the autonomous nervous system as a determinant of the impaired β-cell secretory response after protein-energy restriction in the rat. Endocrinology. 1998;139(8):3382–9. https://doi.org/10.1210/endo.139.8.6149 . (PMID: 10.1210/endo.139.8.61499681486)
Fahien LA, MacDonald MJ. The complex mechanism of glutamate dehydrogenase in insulin secretion. Diabetes. 2011;60(10):2450–4. https://doi.org/10.2337/db10-1150 . (PMID: 10.2337/db10-1150219489993178282)
Leibiger IB, Leibiger B, Berggren PO. Insulin signaling in the pancreatic β-cell. Annu Rev Nutr. 2008;28:233–51. https://doi.org/10.1146/annurev.nutr.28.061807.155530 . (PMID: 10.1146/annurev.nutr.28.061807.15553018481923)
Su Y, Jiang X, Li Y, et al. Maternal low protein isocaloric diet suppresses pancreatic β-cell proliferation in mouse offspring via miR-15b. Endocrinology. 2016;157(12):4782–93. https://doi.org/10.1210/en.2016-1167 . (PMID: 10.1210/en.2016-116727754789)
Dumortier O, Hinault C, Gautier N, Patouraux S, Casamento V, Obberghen V. Maternal protein restriction leads to pancreatic failure in offspring: Role of misexpressed microRNA-375. Diabetes. 2014;63(10):3416–27. https://doi.org/10.2337/db13-1431 . (PMID: 10.2337/db13-143124834976)
Swenne I, Borg LAH, Crace CJ, Landström AS. Persistent reduction of pancreatic Beta-cell mass after a limited period of protein-energy malnutrition in the young rat. Diabetologia. 1992;35(10):939–45. https://doi.org/10.1007/BF00401422 . (PMID: 10.1007/BF004014221451950)
Kirigiti MA, Frazee T, Bennett B, Arik A, Blundell P, Bader L, Bagley J, Frias AE, Sullivan EL, Roberts CT Jr, Kievit P. Effects of pre- and postnatal protein restriction on maternal and offspring metabolism in the nonhuman primate. Am J Physiol Regul Integr Comp Physiol. 2020 May 1;318(5):R929-R939. https://doi.org/10.1152/ajpregu.00150.2019 . Epub 2020 Mar 4. PMID: 32130027; PMCID: PMC7272768.
Eguchi N, Toribio AJ, Alexander M, et al. Dysregulation of β-cell proliferation in diabetes: Possibilities of combination therapy in the development of a comprehensive treatment. Biomedicines. 2022;10(2). https://doi.org/10.3390/biomedicines10020472 .
Jiang WJ, Peng YC, Yang KM. Cellular signaling pathways regulating β-cell proliferation as a promising therapeutic target in the treatment of diabetes (Review). Exp Ther Med. 2018;16(4):3275–85. https://doi.org/10.3892/etm.2018.6603 . (PMID: 10.3892/etm.2018.6603302336746143874)
Filiputti E, Rafacho A, Araújo EP, et al. Augmentation of insulin secretion by leucine supplementation in malnourished rats: possible involvement of the phosphatidylinositol 3-phosphate kinase/mammalian target protein of rapamycin pathway. Metabolism. 2010;59(5):635–44. https://doi.org/10.1016/j.metabol.2009.09.007 . (PMID: 10.1016/j.metabol.2009.09.00719913855)
Tarabra E, Pelengaris S, Khan M. A simple matter of life and death-The trials of postnatal beta-cell mass regulation. Int J Endocrinol. 2012;2012(April 2012). https://doi.org/10.1155/2012/516718 .
Salvatierra CSB, Reis SRL, Pessoa AFM, et al. Short-term low-protein diet during pregnancy alters islet area and protein content of phosphatidylinositol 3-kinase pathway in rats. An Acad Bras Cienc. 2015;87(2):1007–18. https://doi.org/10.1590/0001-3765201520140251 . (PMID: 10.1590/0001-376520152014025125860970)
Krumova K, Cosa G. Chapter 1: Overview of reactive oxygen species. In: Singlet oxygen: Applications in biosciences and nanosciences, volume 1. From book series: Comprehensive series in photochemical & photobiological sciences. 2016. pp. 1–21. https://doi.org/10.1039/9781782622208-00001 . eISBN: 978-1-78262-220-8.
Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981–90. https://doi.org/10.1016/j.cellsig.2012.01.008 . (PMID: 10.1016/j.cellsig.2012.01.008222861063454471)
Lefort N, Glancy B, Bowen B, et al. Increased reactive oxygen species production and lower abundance of complex I subunits and carnitine palmitoyltransferase 1B protein despite normal mitochondrial respiration in insulin-resistant human skeletal muscle. Diabetes. 2010;59(10):2444–52. https://doi.org/10.2337/db10-0174 . (PMID: 10.2337/db10-0174206826933279558)
Barbosa KBF, Costa NMB, Alfenas RDCG, De Paula SO, Minim VPR, Bressan J. Estresse oxidativo: Conceito, implicações e fatores modulatórios. Rev Nutr. 2010;23(4):629–43. https://doi.org/10.1590/S1415-52732010000400013 . (PMID: 10.1590/S1415-52732010000400013)
Gill JG, Piskounova E, Morrison SJ. Cancer, oxidative stress, and metastasis. Cold Spring Harb Symp Quant Biol. 2016;81:163–75. https://doi.org/10.1101/sqb.2016.81.030791 . Epub 2017 Jan 12. PMID: 28082378.
Cervantes-Gracia K, Raja K, Llanas-Cornejo D, et al. Oxidative stress and inflammation in the development of cardiovascular disease and contrast induced nephropathy. Vessel Plus. 2020;4. https://doi.org/10.20517/2574-1209.2020.22 .
Niedzielska E, Smaga I, Gawlik M, et al. Oxidative stress in neurodegenerative diseases. Mol Neurobiol. 2016;53(6):4094–125. https://doi.org/10.1007/s12035-015-9337-5 . (PMID: 10.1007/s12035-015-9337-526198567)
Lenzen S, Drinkgern J, Tiedge M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med. 1996;20(3):463–6. https://doi.org/10.1016/0891-5849(96)02051-5 . (PMID: 10.1016/0891-5849(96)02051-58720919)
Theys N, Clippe A, Bouckenooghe T, Reusens B, Remacle C. Early low protein diet aggravates unbalance between antioxidant enzymes leading to islet dysfunction. PLoS One. 2009;4(7). https://doi.org/10.1371/journal.pone.0006110 .
Tarry-Adkins JL, Chen J, Jones RH, Smith NH, Ozanne SE. Poor maternal nutrition leads to alterations in oxidative stress, antioxidant defense capacity, and markers of fibrosis in rat islets: potential underlying mechanisms for development of the diabetic phenotype in later life. FASEB J. 2010;24(8):2762–71. https://doi.org/10.1096/fj.10-156075 . (PMID: 10.1096/fj.10-15607520388698)
Leenders F, Groen N, de Graaf N, et al. Oxidative stress leads to β-cell dysfunction through loss of β-cell identity. Front Immunol. 2021;12(November). https://doi.org/10.3389/fimmu.2021.690379 .
Grivicich I, Regner A, Rocha AB da. Morte Celular por Apoptose. Rev. Bras. Cancerol. [Internet]. 28º de setembro de 2007 [citado 29º de novembro de 2023];53(3):335–43. Disponível em: https://rbc.inca.gov.br/index.php/revista/article/view/1801 .
Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta - Mol Cell Res. 2016;1863(12):2977–92. https://doi.org/10.1016/j.bbamcr.2016.09.012 . (PMID: 10.1016/j.bbamcr.2016.09.012)
Elmore S. Apoptosis: A review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516. https://doi.org/10.1080/01926230701320337 . (PMID: 10.1080/01926230701320337175624832117903)
Shi Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell. 2002;9(3):459–70. https://doi.org/10.1016/S1097-2765(02)00482-3 . (PMID: 10.1016/S1097-2765(02)00482-311931755)
Boujendar S, Reusens B, Merezak S, et al. Taurine supplementation to a low protein diet during foetal and early postnatal life restores a normal proliferation and apoptosis of rat pancreatic islets. Diabetologia. 2002;45(6):856–66. https://doi.org/10.1007/s00125-002-0833-6 . (PMID: 10.1007/s00125-002-0833-612107730)
Vial-Dahmer DDS, Da Rosa-Santos CA, Silva LR, et al. Protein malnutrition early in life increased apoptosis but did not alter the β-cell mass during gestation. Br J Nutr. 2021;125(10):1111–24. https://doi.org/10.1017/S0007114520003554 . (PMID: 10.1017/S000711452000355432912341)
Zhang X, Tang N, Hadden TJ, Rishi AK. Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta - Mol Cell Res. 2011;1813(11):1978–86. https://doi.org/10.1016/j.bbamcr.2011.03.010 . (PMID: 10.1016/j.bbamcr.2011.03.010)
Zhao H, Sapolsky RM, Steinberg GK. Phosphoinositide-3-kinase/Akt survival signal pathways are implicated in neuronal survival after stroke. Mol Neurobiol. 2006;34(3):249–69. https://doi.org/10.1385/MN:34:3:249 . (PMID: 10.1385/MN:34:3:24917308356)
Chang F, Lee JT, Navolanic PM, et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: A target for cancer chemotherapy. Leukemia. 2003;17(3):590–603. https://doi.org/10.1038/sj.leu.2402824 . (PMID: 10.1038/sj.leu.240282412646949)
Los M, Maddika S, Erb B, Schulze-Osthoff K. Switching Akt: From survival signaling to deadly response. BioEssays. 2009;31(5):492–5. https://doi.org/10.1002/bies.200900005 . (PMID: 10.1002/bies.200900005193199142954189)
Grey K, Gonzales GB, Abera M, et al. Severe malnutrition or famine exposure in childhood and cardiometabolic non-communicable disease later in life: A systematic review. BMJ Glob Heal. 2021;6(3). https://doi.org/10.1136/bmjgh-2020-003161 .
Ferdous F, Filteau S, Schwartz NB, Gumede-Moyo S, Cox SE. Association of postnatal severe acute malnutrition with pancreatic exocrine and endocrine function in children and adults: a systematic review. Br J Nutr. 2023;129(4):576–609. https://doi.org/10.1017/S0007114522001404 . (PMID: 10.1017/S0007114522001404)
Becker DJ, Pimstone BL, Hansen JD, Hendricks S. Insulin secretion in protein-calorie malnutrition. I. Quantitative abnormalities and response to treatment. Diabetes. 1971;20(8):542–51. https://doi.org/10.2337/diab.20.8.542 . (PMID: 10.2337/diab.20.8.5425565001)
Francis-Emmanuel PM, Thompson DS, Barnett AT, et al. Glucose metabolism in adult survivors of severe acute malnutrition. J Clin Endocrinol Metab. 2014;99(6):2233–40. https://doi.org/10.1210/jc.2013-3511 . (PMID: 10.1210/jc.2013-351124517147)
Spoelstra MN, Mari A, Mendel M, et al. Kwashiorkor and marasmus are both associated with impaired glucose clearance related to pancreatic β-cell dysfunction. Metabolism. 2012;61(9):1224–30. https://doi.org/10.1016/j.metabol.2012.01.019 . (PMID: 10.1016/j.metabol.2012.01.01922386944)
Smith SR, Edgar PJ, Pozefsky T, Chhetri MK, Prout TE. Insulin secretion and glucose tolerance in adults with protein-calorie malnutrition. Metabolism. Published online. 1975:1073–1084. https://doi.org/10.1016/0026-0495(75)90101-8 .
Marzouk IM, Desouky MN. Antioxidants and pancreatic +¦-cell function in malnourished infants: A causal relationship. Alexandria J Pediatr. 1998;12(2):255. Accessed on 15 Apr 2023.
Das BK, Ramesh J, Agarwal JK, Mishra OP, Bhatt RP. Blood sugar and serum insulin response in protein-energy malnutrition. J Trop Pediatr. 1998;44(3):139–41. https://doi.org/10.1093/tropej/44.3.139 . (PMID: 10.1093/tropej/44.3.1399680777)
Prinsloo G, Bruin EJPDE, Kruger H. Comparison of intravenous glucose tolerance. Published online. 1971. Accessed on 15 Apr 2023.
Dipasquale V, Cucinotta U, Romano C. Acute malnutrition in children: Pathophysiology, clinical effects and treatment. Nutrients. 2020;12(8):1–9. https://doi.org/10.3390/nu12082413 . (PMID: 10.3390/nu12082413)
Mwene‐Batu P, Bisimwa G, Donnen P, et al. Risk of chronic disease after an episode of marasmus, kwashiorkor or mixed–type severe acute malnutrition in the democratic republic of congo: The Lwiro follow‐up study. Nutrients. 2022;14(12). https://doi.org/10.3390/nu14122465 . - Grant Information: 18/26080-4 Fundação de Amparo à Pesquisa do Estado de São Paulo; 2017/24851-0 Fundação de Amparo à Pesquisa do Estado de São Paulo
- Contributed Indexing: Keywords: Diabetes; Glucose homeostasis; Insulin secretion; Pancreatic β cells; Protein undernutrition
- Accession Number: 0 (Insulin)
- Publication Date: Date Created: 20231204 Date Completed: 20240318 Latest Revision: 20241030
- Publication Date: 20241031
- Accession Number: 10.1007/s11154-023-09856-8
- Accession Number: 38048021
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.