Sodium bicarbonate induces alkalosis, but improves high-intensity cycling performance only when participants expect a beneficial effect: a placebo and nocebo study.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 100954790 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1439-6327 (Electronic) Linking ISSN: 14396319 NLM ISO Abbreviation: Eur J Appl Physiol Subsets: MEDLINE
    • Publication Information:
      Original Publication: Berlin ; New York : Springer-Verlag, c2000-
    • Subject Terms:
    • Abstract:
      The study aimed to investigate the effects of sodium bicarbonate (NaHCO 3 ) intake with divergent verbal and visual information on constant load cycling time-to-task failure, conducted within the severe intensity domain. Fifteen recreational cyclists participated in a randomized double-blind, crossover study, ingesting NaHCO 3 or placebo (i.e., dextrose), but with divergent information about its likely influence (i.e., likely to induce ergogenic, inert, or harmful effects). Performance was evaluated using constant load cycling time to task failure trial at 115% of peak power output estimated during a ramp incremental exercise test. Data on blood lactate, blood acid-base balance, muscle electrical activity (EMG) through electromyography signal, and the twitch interpolation technique to assess neuromuscular indices were collected. Despite reduced peak force in the isometric maximal voluntary contraction and post-effort peripheral fatigue in all conditions (P < 0.001), neither time to task failure, EMG nor, blood acid-base balance differed between conditions (P > 0.05). Evaluation of effect sizes of all conditions suggested that informing participants that the supplement would be likely to have a positive effect (NaHCO 3 /Ergogenic: 0.46; 0.15-0.74; Dextrose/Ergogenic: 0.45; 0.04-0.88) resulted in improved performance compared to control. Thus, NaHCO 3 ingestion consistently induced alkalosis, indicating that the physiological conditions to improve performance were present. Despite this, NaHCO 3 ingestion did not influence performance or indicators of neuromuscular fatigue. In contrast, effect size estimates indicate that participants performed better when informed that they were ingesting an ergogenic supplement. These findings suggest that the apparently ergogenic effect of NaHCO 3 may be due, at least in part, to a placebo effect.
      (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88:287–332. https://doi.org/10.1152/physrev.00015.2007. (PMID: 10.1152/physrev.00015.200718195089)
      Ansdell P, Dekerle J (2020) Sodium bicarbonate supplementation delays neuromuscular fatigue without changes in performance outcomes during a basketball match simulation protocol. J Strength Cond Res 34:1369–1375. https://doi.org/10.1519/JSC.0000000000002233. (PMID: 10.1519/JSC.000000000000223329023327)
      Azevedo PH, Oliveira MG, Tanaka K et al (2021) Perceived exertion and performance modulation: effects of caffeine ingestion and subject expectation. J Sports Med Phys Fitness 61:1185–1192. https://doi.org/10.23736/S0022-4707.21.11659-7. (PMID: 10.23736/S0022-4707.21.11659-733472353)
      Benedetti F, Amanzio M, Vighetti S, Asteggiano G (2006) The biochemical and neuroendocrine bases of the hyperalgesic nocebo effect. J Neurosc 26:12014–12022. https://doi.org/10.1523/JNEUROSCI.2947-06.2006. (PMID: 10.1523/JNEUROSCI.2947-06.2006)
      Bishop D, Edge J, Davis C, Goodman C (2004) Induced metabolic alkalosis affects muscle metabolism and repeated-sprint ability. Med Sci Sports Exerc 36:807–813. https://doi.org/10.1249/01.MSS.0000126392.20025.17. (PMID: 10.1249/01.MSS.0000126392.20025.1715126714)
      Borg GAV (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381. https://doi.org/10.1249/00005768-198205000-00012. (PMID: 10.1249/00005768-198205000-000127154893)
      Brisola GMP, Miyagi WE, da Silva HS, Zagatto AM (2015) Sodium bicarbonate supplementation improved MAOD but is not correlated with 200- and 400-m running performances: a double-blind, crossover, and placebo-controlled study. Appl Physiol Nutr Metab 40:931–937. https://doi.org/10.1139/apnm-2015-0036. (PMID: 10.1139/apnm-2015-003626300016)
      Broelz EK, Enck P, Niess AM et al (2019) The neurobiology of placebo effects in sports: EEG frontal alpha asymmetry increases in response to a placebo ergogenic aid. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-38828-9. (PMID: 10.1038/s41598-019-38828-9)
      Carr AJ, Hopkins WG, Gore CJ (2011) Effects of acute alkalosis and acidosis on performance. Sports Med 41:801–814. https://doi.org/10.2165/11591440-000000000-00000. (PMID: 10.2165/11591440-000000000-0000021923200)
      Correia-Oliveira CR, Lopes-Silva JP, Bertuzzi R et al (2017) Acidosis, but not Alkalosis, affects anaerobic metabolism and performance in a 4-km time trial. Med Sci Sports Exerc 49:1899–1910. https://doi.org/10.1249/MSS.0000000000001295. (PMID: 10.1249/MSS.000000000000129528398947)
      de Almeida Azevedo R, Forot J, Iannetta D et al (2022) Time course of performance fatigability during exercise below, at, and above the critical intensity in females and males. Med Sci Sports Exerc 54:1665–1677. https://doi.org/10.1249/MSS.0000000000002957. (PMID: 10.1249/MSS.0000000000002957)
      de Oliveira LF, Dolan E, Swinton PA et al (2022) Extracellular buffering supplements to improve exercise capacity and performance: a comprehensive systematic review and meta-analysis. Sports Med 52:505–526. https://doi.org/10.1007/s40279-021-01575-x. (PMID: 10.1007/s40279-021-01575-x34687438)
      de Poli RAB, Boullosa DA, Malta ES et al (2020) Cycling performance enhancement after drop jumps may be attributed to postactivation potentiation and increased anaerobic capacity. J Strength Cond Res 34:2465–2475. https://doi.org/10.1519/JSC.0000000000003399. (PMID: 10.1519/JSC.000000000000339932205815)
      Dutra YM, Claus GMH, Malta EDS et al (2020) Acute photobiomodulation by LED does not alter muscle fatigue and cycling performance. Med Sci Sports Exerc 52:2448–2458. https://doi.org/10.1249/MSS.0000000000002394. (PMID: 10.1249/MSS.000000000000239432366796)
      Fitts RH (2016) The role of acidosis in fatigue. Med Sci Sports Exerc 48:2335–2338. https://doi.org/10.1249/MSS.0000000000001043. (PMID: 10.1249/MSS.000000000000104327755382)
      Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81:1725–1789. https://doi.org/10.1152/physrev.2001.81.4.1725. (PMID: 10.1152/physrev.2001.81.4.172511581501)
      Grgic J, Pedisic Z, Saunders B et al (2021) International society of sports nutrition position stand: sodium bicarbonate and exercise performance. J Int Soc Sports Nutr 18:61. https://doi.org/10.1186/s12970-021-00458-w. (PMID: 10.1186/s12970-021-00458-w345035278427947)
      Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10:361–374. https://doi.org/10.1016/S1050-6411(00)00027-4. (PMID: 10.1016/S1050-6411(00)00027-411018445)
      Higgins MF, James RS, Price MJ (2013) The effects of sodium bicarbonate (NaHCO 3) ingestion on high intensity cycling capacity. J Sports Sci 31:972–981. https://doi.org/10.1080/02640414.2012.758868. (PMID: 10.1080/02640414.2012.75886823323673)
      Hureau TJ, Broxterman RM, Weavil JC et al (2022) On the role of skeletal muscle acidosis and inorganic phosphates as determinants of central and peripheral fatigue: A 31 P-MRS study. J Physiol 600:3069–3081. https://doi.org/10.1113/JP283036. (PMID: 10.1113/JP28303635593645)
      Hurst P, Schipof-Godart L, Szabo A et al (2020) The Placebo and Nocebo effect on sports performance: a systematic review. Eur J Sport Sci 20:279–292. https://doi.org/10.1080/17461391.2019.1655098. (PMID: 10.1080/17461391.2019.165509831414966)
      Iannetta D, Azevedo RDA, Keir DA, Murias JM (2019) Establishing the VO2 versus constant-work-rate relationship from rampincremental exercise: simple strategies for an unsolved problem. J Appl Physiol 127:1519–1527. https://doi.org/10.1152/japplphysiol.00508.2019. (PMID: 10.1152/japplphysiol.00508.2019315802186962604)
      Iannetta D, de Almeida AR, Ingram CP et al (2020) Evaluating the suitability of supra-PO peak verification trials after ramp-incremental exercise to confirm the attainment of maximum O2 uptake. Am J Physiol Regul Integr Comp Physiol 319:R315–R322. https://doi.org/10.1152/ajpregu.00126.2020. (PMID: 10.1152/ajpregu.00126.2020326976527509256)
      Iannetta D, Zhang J, Murias JM, Aboodarda SJ (2022) Neuromuscular and perceptual mechanisms of fatigue accompanying task failure in response to moderate-, heavy-, severe-, and extreme-intensity cycling. J Appl Physiol 133:323–334. https://doi.org/10.1152/japplphysiol.00764.2021. (PMID: 10.1152/japplphysiol.00764.202135771217)
      McClung M, Collins D (2007) Because i know it will!: placebo effects of an ergogenic aid on athletic performance. J Sport Exerc Psychol 29:382–394. https://doi.org/10.1123/jsep.29.3.382. (PMID: 10.1123/jsep.29.3.38217876973)
      Meissner K (2011) The placebo effect and the autonomic nervous system: evidence for an intimate relationship. Philos Trans R Soc B Biol Sci 366:1808–1817. https://doi.org/10.1098/rstb.2010.0403. (PMID: 10.1098/rstb.2010.0403)
      Milioni F, De PRAB, Saunders B et al (2019) Effect of β-alanine supplementation during high-intensity interval training on repeated sprint ability performance and neuromuscular fatigue. J Appl Physiol 127:1599–1610. https://doi.org/10.1152/japplphysiol.00321.2019. (PMID: 10.1152/japplphysiol.00321.201931622158)
      Millet GY, Martin V, Martin A, Vergès S (2011) Electrical stimulation for testing neuromuscular function: from sport to pathology. Eur J Appl Physiol 111:2489–2500. https://doi.org/10.1007/s00421-011-1996-y. (PMID: 10.1007/s00421-011-1996-y21590274)
      Miyagi WE, De PRDAB, Papoti M et al (2017) Anaerobic capacityestimated in a single supramaximal test in cycling: validity and reliability analysis. Sci Rep 7:42485. https://doi.org/10.1038/srep42485. (PMID: 10.1038/srep42485282119055304204)
      Murias JM, Pogliaghi S, Paterson DH (2018) Measurement of a True VO2max during a ramp incremental test is not confirmed by a verification phase. Front Physiol. https://doi.org/10.3389/fphys.2018.00143. (PMID: 10.3389/fphys.2018.00143297803265946630)
      Neyroud D, Vallotton A, Millet GY et al (2014) The effect of muscle fatigue on stimulus intensity requirements for central and peripheral fatigue quantification. Eur J Appl Physiol 114:205–215. https://doi.org/10.1007/s00421-013-2760-2. (PMID: 10.1007/s00421-013-2760-224197080)
      Neyroud D, Cheng AJ, Bourdillon N et al (2016) Muscle Fatigue affects the interpolated twitch technique when assessed using electrically-induced contractions in human and rat muscles. Front Physiol 7:1–10. https://doi.org/10.3389/fphys.2016.00252. (PMID: 10.3389/fphys.2016.00252)
      Robertson CV, Marino FE (2015) Prefrontal and motor cortex EEG responses and their relationship to ventilatory thresholds during exhaustive incremental exercise. Eur J Appl Physiol 115:1939–1948. https://doi.org/10.1007/s00421-015-3177-x. (PMID: 10.1007/s00421-015-3177-x25917836)
      Saunders B, de Oliveira LF, Dolan E et al (2022) Sodium bicarbonate supplementation and the female athlete: a brief commentary with small scale systematic review and meta-analysis. Eur J Sport Sci 22:745–754. https://doi.org/10.1080/17461391.2021.1880649. (PMID: 10.1080/17461391.2021.188064933487131)
      Seitz LB, Trajano GS, Maso FD et al (2015) Postactivation potentiation during voluntary contractions after continued knee extensor task-specific practice. App Physiol Nutr Metab 40:230–237. https://doi.org/10.1139/apnm-2014-0377. (PMID: 10.1139/apnm-2014-0377)
      Siegler JC, Marshall PWM, Bishop D et al (2016) Mechanistic insights into the efficacy of sodium bicarbonate supplementation to improve athletic performance. Sports Med Open 2:41. https://doi.org/10.1186/s40798-016-0065-9. (PMID: 10.1186/s40798-016-0065-9277477965059234)
      Tanaka M, Shigihara Y, Watanabe Y (2011) Central inhibition regulates motor output during physical fatigue. Brain Res 1412:37–43. https://doi.org/10.1016/j.brainres.2011.07.021. (PMID: 10.1016/j.brainres.2011.07.02121803341)
      Thomas K, Elmeua M, Howatson G, Goodall S (2016) Intensity-dependent contribution of neuromuscular fatigue after constant-load cycling. Med Sci Sports Exerc 48:1751–1760. https://doi.org/10.1249/MSS.0000000000000950. (PMID: 10.1249/MSS.000000000000095027187101)
      Tolusso DV, Laurent CM, Fullenkamp AM, Tobar DA (2015) Placebo effect. J Strength Cond Res 29:1915–1924. https://doi.org/10.1519/JSC.0000000000000844. (PMID: 10.1519/JSC.000000000000084425853916)
      Westerblad H (2016) Acidosis is not a significant cause of skeletal muscle fatigue. Med Sci Sports Exerc 48:2339–2342. https://doi.org/10.1249/MSS.0000000000001044. (PMID: 10.1249/MSS.000000000000104427755383)
      Yousif HA, Zakaria A, Rahim NA et al (2019) Assessment of muscles fatigue based on surface EMG signals using machine learning and statistical approaches: a review. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/705/1/012010. (PMID: 10.1088/1757-899X/705/1/012010)
      Zagatto AM, Bishop DJ, Antunes BM et al (2022a) Impacts of high-intensity exercise on the metabolomics profile of human skeletal muscle tissue. Scand J Med Sci Sports 32:402–413. https://doi.org/10.1111/sms.14086. (PMID: 10.1111/sms.1408634706104)
      Zagatto AM, Claus GM, Dutra YM et al (2022b) Drop jumps versus sled towing and their effects on repeated sprint ability in young basketball players. BMC Sports Sci Med Rehabil 14:4. https://doi.org/10.1186/s13102-021-00395-w. (PMID: 10.1186/s13102-021-00395-w349836278729080)
    • Grant Information:
      . 2021/14156-9 Fundação de Amparo à Pesquisa do Estado de São Paulo; 19/22726-0 Fundação de Amparo à Pesquisa do Estado de São Paulo; 21/08479-0 Fundação de Amparo à Pesquisa do Estado de São Paulo; 19/17445-1 Fundação de Amparo à Pesquisa do Estado de São Paulo; 001 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
    • Contributed Indexing:
      Keywords: Blood acid–base balance; Cycling performance; Peripheral nerve stimulations; Placebo effect; Supplement expectation
    • Accession Number:
      8MDF5V39QO (Sodium Bicarbonate)
      0 (Performance-Enhancing Substances)
      33X04XA5AT (Lactic Acid)
    • Publication Date:
      Date Created: 20231130 Date Completed: 20240427 Latest Revision: 20240510
    • Publication Date:
      20250114
    • Accession Number:
      10.1007/s00421-023-05368-0
    • Accession Number:
      38032386