Menu
×
Edisto Island Library
Closed
Phone: (843) 869-2355
Wando Mount Pleasant Library
9 a.m. – 8 p.m.
Phone: (843) 805-6888
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. – 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. – 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. – 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. – 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. – 8 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. – 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 5:30 p.m.
Phone: (843) 588-2001
Dorchester Road Library
9 a.m. – 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
12 - 7 p.m.
Phone: (843) 722-7550
Main Library
12 - 8 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. – 8 p.m.
Phone: (843) 805-6892
John's Island Library
Closed
Phone: (843) 559-1945
Baxter-Patrick James Island
Closed
Phone: (843) 795-6679
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
Edisto Island Library
Closed
Phone: (843) 869-2355
Wando Mount Pleasant Library
9 a.m. – 8 p.m.
Phone: (843) 805-6888
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. – 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. – 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. – 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. – 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. – 8 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. – 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 5:30 p.m.
Phone: (843) 588-2001
Dorchester Road Library
9 a.m. – 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
12 - 7 p.m.
Phone: (843) 722-7550
Main Library
12 - 8 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. – 8 p.m.
Phone: (843) 805-6892
John's Island Library
Closed
Phone: (843) 559-1945
Baxter-Patrick James Island
Closed
Phone: (843) 795-6679
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Extracellular and intracellular destruction of Pseudomonas aeruginosa by Dictyostelium discoideum phagocytes mobilize different antibacterial mechanisms.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Ayadi I;Ayadi I; Lamrabet O; Lamrabet O; Munoz-Ruiz R; Munoz-Ruiz R; Jauslin T; Jauslin T; Guilhen C; Guilhen C; Cosson P; Cosson P
- Source:
Molecular microbiology [Mol Microbiol] 2024 Jan; Vol. 121 (1), pp. 69-84. Date of Electronic Publication: 2023 Nov 28.- Publication Type:
Journal Article; Research Support, Non-U.S. Gov't- Language:
English - Source:
- Additional Information
- Source: Publisher: Blackwell Scientific Publications Country of Publication: England NLM ID: 8712028 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2958 (Electronic) Linking ISSN: 0950382X NLM ISO Abbreviation: Mol Microbiol Subsets: MEDLINE
- Publication Information: Original Publication: Oxford, OX ; Boston, MA : Blackwell Scientific Publications, c1987-
- Subject Terms:
- Abstract: Ingestion and killing of bacteria by phagocytic cells are critical processes to protect the human body from bacterial infections. In addition, some immune cells (neutrophils, NK cells) can release microbicidal molecules in the extracellular medium to eliminate non-ingested microorganism. Molecular mechanisms involved in the resulting intracellular and extracellular killing are still poorly understood. In this study, we used the amoeba Dictyostelium discoideum as a model phagocyte to investigate the mechanisms allowing intracellular and extracellular killing of Pseudomonas aeruginosa. When a D. discoideum cell establishes a close contact with a P. aeruginosa bacterium, it can either ingest it and kill it in phagosomes, or kill it extracellularly, allowing a direct side-by-side comparison of these two killing modalities. Efficient intracellular destruction of P. aeruginosa requires the presence of the Kil2 pump in the phagosomal membrane. On the contrary, extracellular lysis is independent on Kil2 but requires the expression of the superoxide-producing protein NoxA, and the extracellular release of the AplA bacteriolytic protein. These results shed new light on the molecular mechanisms allowing elimination of P. aeruginosa bacteria by phagocytic cells.
(© 2023 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.) - References: Adiba, S., Nizak, C., van Baalen, M., Denamur, E. & Depaulis, F. (2010) From grazing resistance to pathogenesis: the coincidental evolution of virulence factors. PLoS One, 5, e11882. Available from: https://doi.org/10.1371/journal.pone.0011882.
Alibaud, L., Kohler, T., Coudray, A., Prigent-Combaret, C., Bergeret, E., Perrin, J. et al. (2008) Pseudomonas aeruginosa virulence genes identified in a Dictyostelium host model. Cellular Microbiology, 10, 729-740. Available from: https://doi.org/10.1111/j.1462-5822.2007.01080.x.
Ayadi, I. (2021) The AE404 antibody recognizes a Pseudomonas aeruginosa PAO1 surface antigen by flow cytometry. Antibody Reports, 4, e545.
Benghezal, M., Gotthardt, D., Cornillon, S. & Cosson, P. (2001) Localization of the Rh50-like protein to the contractile vacuole in Dictyostelium. Immunogenetics, 52, 284-288. Available from: https://doi.org/10.1007/s002510000279.
Bodinier, R., Leiba, J., Sabra, A., Jauslin, T.N., Lamrabet, O., Guilhen, C. et al. (2020) LrrkA, a kinase with leucine-rich repeats, links folate sensing with Kil2 activity and intracellular killing. Cellular Microbiology, 22, e13129. Available from: https://doi.org/10.1111/cmi.13129.
Caterina, M.J., Milne, J.L. & Devreotes, P.N. (1994) Mutation of the third intracellular loop of the cAMP receptor, cAR1, of Dictyostelium yields mutants impaired in multiple signaling pathways. The Journal of Biological Chemistry, 269, 1523-1532.
Charette, S.J., Mercanti, V., Letourneur, F., Bennett, N. & Cosson, P. (2006) A role for adaptor protein-3 complex in the organization of the endocytic pathway in Dictyostelium. Traffic, 7, 1528-1538. Available from: https://doi.org/10.1111/j.1600-0854.2006.00478.x.
Cornillon, S., Pech, E., Benghezal, M., Ravanel, K., Gaynor, E., Letourneur, F. et al. (2000) Phg1p is a nine-transmembrane protein superfamily member involved in dictyostelium adhesion and phagocytosis. The Journal of Biological Chemistry, 275, 34287-34292. Available from: https://doi.org/10.1074/jbc.M006725200.
Cosson, P. & Soldati, T. (2008) Eat, kill or die: when amoeba meets bacteria. Current Opinion in Microbiology, 11, 271-276. Available from: https://doi.org/10.1016/j.mib.2008.05.005.
Cosson, P., Zulianello, L., Join-Lambert, O., Faurisson, F., Gebbie, L., Benghezal, M. et al. (2002) Pseudomonas aeruginosa virulence analyzed in a Dictyostelium discoideum host system. Journal of Bacteriology, 184, 3027-3033. Available from: https://doi.org/10.1128/jb.184.11.3027-3033.2002.
Crespo-Yanez, X., Oddy, J., Lamrabet, O., Jauslin, T., Marchetti, A. & Cosson, P. (2022) Sequential action of antibacterial effectors in Dictyostelium discoideum phagosomes. Molecular Microbiology, 119, 74-85. Available from: https://doi.org/10.1111/mmi.15004.
Delince, M.J., Bureau, J.B., Lopez-Jimenez, A.T., Cosson, P., Soldati, T. & McKinney, J.D. (2016) A microfluidic cell-trapping device for single-cell tracking of host-microbe interactions. Lab on a Chip, 16, 3276-3285. Available from: https://doi.org/10.1039/c6lc00649c.
Dhakshinamoorthy, R., Bitzhenner, M., Cosson, P., Soldati, T. & Leippe, M. (2018) The Saposin-like protein AplD displays pore-forming activity and participates in defense against bacterial infection during a multicellular stage of Dictyostelium discoideum. Frontiers in Cellular and Infection Microbiology, 8, 73. Available from: https://doi.org/10.3389/fcimb.2018.00073.
Dimond, R.L., Burns, R.A. & Jordan, K.B. (1981) Secretion of lysosomal enzymes in the cellular slime mold, Dictyostelium discoideum. The Journal of Biological Chemistry, 256, 6565-6572.
Dunn, J.D., Bosmani, C., Barisch, C., Raykov, L., Lefrancois, L.H., Cardenal-Munoz, E. et al. (2017) Eat prey, live: Dictyostelium discoideum As a model for cell-autonomous defenses. Frontiers in Immunology, 8, 1906. Available from: https://doi.org/10.3389/fimmu.2017.01906.
Eichelberger, K.R. & Goldman, W.E. (2020) Manipulating neutrophil degranulation as a bacterial virulence strategy. PLoS Pathogens, 16, e1009054. Available from: https://doi.org/10.1371/journal.ppat.1009054.
Eichelberger, K.R., Jones, G.S. & Goldman, W.E. (2019) Inhibition of neutrophil primary granule release during Yersinia pestis pulmonary infection. mBio, 10, 10.1128. Available from: https://doi.org/10.1128/mBio.02759-19.
Faurschou, M. & Borregaard, N. (2003) Neutrophil granules and secretory vesicles in inflammation. Microbes and Infection, 5, 1317-1327. Available from: https://doi.org/10.1016/j.micinf.2003.09.008.
Fletcher, M.P., Diggle, S.P., Camara, M. & Williams, P. (2007) Biosensor-based assays for PQS, HHQ and related 2-alkyl-4-quinolone quorum sensing signal molecules. Nature Protocols, 2, 1254-1262. Available from: https://doi.org/10.1038/nprot.2007.158.
Froquet, R., le Coadic, M., Perrin, J., Cherix, N., Cornillon, S. & Cosson, P. (2012) TM9/Phg1 and SadA proteins control surface expression and stability of SibA adhesion molecules in Dictyostelium. Molecular Biology of the Cell, 23, 679-686. Available from: https://doi.org/10.1091/mbc.E11-04-0338.
Froquet, R., Lelong, E., Marchetti, A. & Cosson, P. (2009) Dictyostelium discoideum: a model host to measure bacterial virulence. Nature Protocols, 4, 25-30. Available from: https://doi.org/10.1038/nprot.2008.212.
Gotzke, H., Kilisch, M., Martinez-Carranza, M., Sograte-Idrissi, S., Rajavel, A., Schlichthaerle, T. et al. (2019) The ALFA-tag is a highly versatile tool for nanobody-based bioscience applications. Nature Communications, 10, 4403. Available from: https://doi.org/10.1038/s41467-019-12301-7.
Hardalo, C. & Edberg, S.C. (1997) Pseudomonas aeruginosa: assessment of risk from drinking water. Critical Reviews in Microbiology, 23, 47-75. Available from: https://doi.org/10.3109/10408419709115130.
Jauslin, T., Lamrabet, O., Crespo-Yanez, X., Marchetti, A., Ayadi, I., Ifrid, E. et al. (2021) How phagocytic cells kill different bacteria: a quantitative analysis using Dictyostelium discoideum. mBio, 12, 10.1128. Available from: https://doi.org/10.1128/mBio.03169-20.
Kaufmann, S.H.E. & Dorhoi, A. (2016) Molecular determinants in phagocyte-bacteria interactions. Immunity, 44, 476-491. Available from: https://doi.org/10.1016/j.immuni.2016.02.014.
Knecht, D.A., Dimond, R.L., Wheeler, S. & Loomis, W.F. (1984) Antigenic determinants shared by lysosomal proteins of Dictyostelium discoideum. Characterization using monoclonal antibodies and isolation of mutations affecting the determinant. The Journal of Biological Chemistry, 259, 10633-10640.
Kohler, T., Curty, L.K., Barja, F., van Delden, C. & Pechere, J.C. (2000) Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. Journal of Bacteriology, 182, 5990-5996. Available from: https://doi.org/10.1128/jb.182.21.5990-5996.2000.
Krensky, A.M. & Clayberger, C. (2009) Biology and clinical relevance of granulysin. Tissue Antigens, 73, 193-198. Available from: https://doi.org/10.1111/j.1399-0039.2008.01218.x.
Lamrabet, O. (2020) The AL626 antibody recognizes an ALFA-tagged protein by western blot. Antibody Reports, 3, e123.
Lamrabet, O., Jauslin, T., Lima, W.C., Leippe, M. & Cosson, P. (2020) The multifarious lysozyme arsenal of Dictyostelium discoideum. Developmental and Comparative Immunology, 107, 103645. Available from: https://doi.org/10.1016/j.dci.2020.103645.
Lardy, B., Bof, M., Aubry, L., Paclet, M.H., Morel, F., Satre, M. et al. (2005) NADPH oxidase homologs are required for normal cell differentiation and morphogenesis in Dictyostelium discoideum. Biochimica et Biophysica Acta, 1744, 199-212. Available from: https://doi.org/10.1016/j.bbamcr.2005.02.004.
Leippe, M. & Herbst, R. (2004) Ancient weapons for attack and defense: the pore-forming polypeptides of pathogenic enteric and free-living amoeboid protozoa. The Journal of Eukaryotic Microbiology, 51, 516-521. Available from: https://doi.org/10.1111/j.1550-7408.2004.tb00286.x.
Lelong, E., Marchetti, A., Gueho, A., Lima, W.C., Sattler, N., Molmeret, M. et al. (2011) Role of magnesium and a phagosomal P-type ATPase in intracellular bacterial killing. Cellular Microbiology, 13, 246-258. Available from: https://doi.org/10.1111/j.1462-5822.2010.01532.x.
Levin, R., Grinstein, S. & Canton, J. (2016) The life cycle of phagosomes: formation, maturation, and resolution. Immunological Reviews, 273, 156-179. Available from: https://doi.org/10.1111/imr.12439.
Lima, W.C. (2019a) The AK422 antibody recognizes Dictyostelium SctA protein by Western blot. Antibody Reports, 2, e58.
Lima, W.C. (2019b) The AK426 antibody recognizes the Golgi apparatus in Dictyostelium cells by immunofluorescence. Antibody Reports, 2, e59.
Lima, W.C. & Cosson, P. (2019a) The AJ154 antibody recognizes the Dictyostelium p80 protein by Western blot. Antibody Reports, 2, e24.
Lima, W.C. & Cosson, P. (2019b) The AJ513 antibody recognizes the Dictyostelium p25 marker by immunofluorescence. Antibody Reports, 2, e44.
Lima, W.C. & Cosson, P. (2019c) The AJ514 antibody recognizes the common antigen 1 from Dictyostelium discoideum by immunofluorescence. Antibody Reports, 2, e45.
Lima, W.C. & Cosson, P. (2019d) The AJ520 antibody recognizes the Dictyostelium vacuolar H+-ATPase subunit a by immunofluorescence. Antibody Reports, 2, e46.
Lima, W.C., Pillonel, T., Bertelli, C., Ifrid, E., Greub, G. & Cosson, P. (2018) Genome sequencing and functional characterization of the non-pathogenic Klebsiella pneumoniae KpGe bacteria. Microbes and Infection, 20, 293-301. Available from: https://doi.org/10.1016/j.micinf.2018.04.001.
Lu, C.C., Wu, T.S., Hsu, Y.J., Chang, C.J., Lin, C.S., Chia, J.H. et al. (2014) NK cells kill mycobacteria directly by releasing perforin and granulysin. Journal of Leukocyte Biology, 96, 1119-1129. Available from: https://doi.org/10.1189/jlb.4A0713-363RR.
Marchetti, A. (2021) The AN703 antibody recognizes Dictyostelium discoideum PDI by immunofluorescence. Antibody Reports, 4, e571.
Mok, A.C., Mody, C.H. & Li, S.S. (2021) Immune cell degranulation in fungal host Defence. Journal of Fungi, 7, 484. Available from: https://doi.org/10.3390/jof7060484.
Othman, A., Sekheri, M. & Filep, J.G. (2021) Roles of neutrophil granule proteins in orchestrating inflammation and immunity. The FEBS Journal, 289, 3932-3953. Available from: https://doi.org/10.1111/febs.15803.
Pena, S.V. & Krensky, A.M. (1997) Granulysin, a new human cytolytic granule-associated protein with possible involvement in cell-mediated cytotoxicity. Seminars in Immunology, 9, 117-125. Available from: https://doi.org/10.1006/smim.1997.0061.
Pukatzki, S., Kessin, R.H. & Mekalanos, J.J. (2002) The human pathogen Pseudomonas aeruginosa utilizes conserved virulence pathways to infect the social amoeba Dictyostelium discoideum. Proceedings of the National Academy of Sciences of the United States of America, 99, 3159-3164. Available from: https://doi.org/10.1073/pnas.052704399.
Ragland, S.A. & Criss, A.K. (2017) From bacterial killing to immune modulation: recent insights into the functions of lysozyme. PLoS Pathogens, 13, e1006512. Available from: https://doi.org/10.1371/journal.ppat.1006512.
Ravanel, K., de Chassey, B., Cornillon, S., Benghezal, M., Zulianello, L., Gebbie, L. et al. (2001) Membrane sorting in the endocytic and phagocytic pathway of Dictyostelium discoideum. European Journal of Cell Biology, 80, 754-764. Available from: https://doi.org/10.1078/0171-9335-00215.
Sabra, A., Leiba, J., Mas, L., Louwagie, M., Coute, Y., Journet, A. et al. (2016) Pycnosomes: condensed endosomal structures secreted by Dictyostelium amoebae. PLoS One, 11, e0154875. Available from: https://doi.org/10.1371/journal.pone.0154875.
Stenger, S., Hanson, D.A., Teitelbaum, R., Dewan, P., Niazi, K.R., Froelich, C.J. et al. (1998) An antimicrobial activity of cytolytic T cells mediated by granulysin. Science, 282, 121-125. Available from: https://doi.org/10.1126/science.282.5386.121.
Thibault, J., Faudry, E., Ebel, C., Attree, I. & Elsen, S. (2009) Anti-activator ExsD forms a 1:1 complex with ExsA to inhibit transcription of type III secretion operons. The Journal of Biological Chemistry, 284, 15762-15770. Available from: https://doi.org/10.1074/jbc.M109.003533.
Uribe-Querol, E. & Rosales, C. (2017) Control of phagocytosis by microbial pathogens. Frontiers in Immunology, 8, 1368. Available from: https://doi.org/10.3389/fimmu.2017.01368.
Vermot, A., Petit-Hartlein, I., Smith, S.M.E. & Fieschi, F. (2021) NADPH oxidases (NOX): an overview from discovery, molecular mechanisms to physiology and pathology. Antioxidants (Basel), 10, 890. Available from: https://doi.org/10.3390/antiox10060890.
Walch, M., Dotiwala, F., Mulik, S., Thiery, J., Kirchhausen, T., Clayberger, C. et al. (2014) Cytotoxic cells kill intracellular bacteria through granulysin-mediated delivery of granzymes. Cell, 157, 1309-1323. Available from: https://doi.org/10.1016/j.cell.2014.03.062.
Weaver, T.E. & Whitsett, J.A. (1989) Processing of hydrophobic pulmonary surfactant protein B in rat type II cells. The American Journal of Physiology, 257, L100-L108. Available from: https://doi.org/10.1152/ajplung.1989.257.2.L100.
Yang, L., Johansson, J., Ridsdale, R., Willander, H., Fitzen, M., Akinbi, H.T. et al. (2010) Surfactant protein B propeptide contains a saposin-like protein domain with antimicrobial activity at low pH. Journal of Immunology, 184, 975-983. Available from: https://doi.org/10.4049/jimmunol.0900650. - Grant Information: 310030_201186 Switzerland SNSF_ Swiss National Science Foundation
- Contributed Indexing: Keywords: Dictyostelium discoideum; Pseudomonas aeruginosa; AplA; Kil2; NADPH oxidase; NoxA; amoebapore; bactericidal; killing
- Accession Number: 0 (Anti-Bacterial Agents)
- Publication Date: Date Created: 20231129 Date Completed: 20240115 Latest Revision: 20240412
- Publication Date: 20250114
- Accession Number: 10.1111/mmi.15197
- Accession Number: 38017607
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.