Early Phosphorylated Protein 1 is required to activate the early rhizobial infection program.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley on behalf of New Phytologist Trust Country of Publication: England NLM ID: 9882884 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1469-8137 (Electronic) Linking ISSN: 0028646X NLM ISO Abbreviation: New Phytol Subsets: MEDLINE
    • Publication Information:
      Publication: Oxford : Wiley on behalf of New Phytologist Trust
      Original Publication: London, New York [etc.] Academic Press.
    • Subject Terms:
    • References:
      Amor BB, Shaw SL, Oldroyd GE, Maillet F, Menmetsa RV, Cook D. 2003. The NFP locus of Medicago truncatula controls an early step of Nof factor signal transduction upstream of a rapid calcium flux and root hair deformation. The Plant Journal 34: 495-506.
      Ané JM, Lévy J, Thoquet P, Kulikova O, de Billy F, Penmetsa V, Kim DK, Debellé F, Rosenberg C, Cook DR et al. 2002. Genetic and cytogenetic mapping of DMI1, DMI2, and DMI3 genes of Medicago truncatula involved in Nod factor transduction, nodulation, and mycorrhization. Molecular Plant-Microbe Interactions 15: 1108-1118.
      Arrighi JF, Barre A, Ben Amor B, Bersoult A, Campos Soriana L, Mirabella R, de Carvalho-Niebel F, Journet EP, Ghérardi M, Huguet T et al. 2006. The Medicago truncatula lysin motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiology 142: 265-279.
      Boisson-Dernier A, Andriankaja A, Chabaud M, Niebel A, Journet EP, Barker DG, de Carvalho-Niebel F. 2005. MtENOD11 gene activation during rhizobial infection and mycorrhizal arbuscule development requires a common AT-rich-containing regulatory sequence. Molecular Plant-Microbe Interactions 18: 1269-1276.
      Boisson-Dernier A, Chabaud M, Garcia F, Bécard G, Rosenberg C, Barker DC. 2001. Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Molecular Plant-Microbe Interactions 14: 695-700.
      Catoira R, Galera C, de Billy F, Penmetsa RV, Journet EP, Maillet F, Rosenberg C, Cook D, Gough C, Dénarié J. 2000. Four genes of Medicago truncatula controlling components of a Nod factor transduction pathway. Plant Cell 12: 1647-1665.
      Cerri MR, Frances L, Laloum T, Auria MC, Niebel A, Oldroyd GED, Barker DG, Fournier J, de Carvalho-Niebel F. 2012. Medicago trucatula ERN transcription factors: regulatory interplay with NSP1/NSP2 GRAS factors and expression dynamics throughout rhizobial infection. Plant Physiology 160: 2155-2172.
      Charpentier M, Sun J, Vas Martins T, Radhakrishnan GV, Findlay K, Soumpourou E, Thouin J, Véry AA, Sanders D, Morris R et al. 2016. Nuclear-localized cyclic nucleotide-gated channels mediate symbiotic calcium oscillations. Science 352: 1102-1105.
      Damiani I, Drain A, Guichard M, Balzergue S, Boascari A, Boyer JC, Brunaud V, Cottaz S, Rancurel C, Da Rocha M et al. 2016. Nod Factors effects on root hair-specific transcriptome of Medicago truncatula: plasma membrane transport systems and reactive oxygen species networks. Frontiers in Plant Science 7: 794.
      Dénarié J, Debellé F, Promé JC. 1996. Rhizobium lipo-chitooligosaccharide nodulation factor: signaling molecules mediating recognition and morphogenesis. Annual Review of Biochemistry 65: 503-535.
      Ehrhardt DW, Wais R, Long SR. 1996. Calcium spiking in plant root hairs responding to rhizobium nodulation signals. Cell 85: 673-681.
      Feng J, Lee T, Schiessl K, Oldroyd GED. 2021. Processing of NODULE INCEPTION controls the transition to nitrogen fixation in root nodules. Science 374: 629-632.
      Ferguson BJ, Mens C, Hastwell AH, Zhang M, Su H, Jones CH, Chu X, Gresshoff PM. 2019. Legume nodulation: the host controls the party. Plant, Cell & Environment 42: 41-51.
      Gleason G, Chaudhuri S, Yang T, Muñoz A, Poovaiah BW, Oldroyd GED. 2006. Nodulation independent of rhizobia induced by a calcium-activated kinase lacking autoinhibition. Nature 44: 1149-1152.
      Jiménez-Jacinto V, Sanchez-Flores A, Vega-Alvarado L. 2019. Integrative Differential Expression Analysis for Multiple EXpreriments (IDEAMEX): a web server tool for integrated RNA-Seq data analysis. Frontiers in Genetics 10: 279.
      Kanamori N, Madsen LH, Radutoiu S, Frantescu M, Quistgaard EMH, Miwa H, Downie JA, James EK, Felle HH, Lindegaard L et al. 2006. A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proceedings of the National Academy of Sciences, USA 103: 359-364.
      Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with bowtie 2. Nature Methods 9: 357-359.
      Li H, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics 12: 323.
      Lindström K, Mousavi A. 2020. Effectiveness of nitrogen fixation in rhizobia. Microbial Biotechnology 13: 1314-1335.
      Liu CW, Breakspear A, Guan D, Cerri MR, Jackson K, Jiang SY, Robson F, Radhakrishnan GV, Roy S, Bone C et al. 2019. NIN acts as a network hub controlling a growth module required for rhizobial infection. Plant Physiology 179: 1704-1722.
      Liu CW, Murray JD. 2016. The role of flavonoids in nodulation host-range specificity: an update. Plants 5: 33.
      Marsh JF, Rakocevic A, Mitra RM, Brocard L, Sun J, Eschtruth A, Long SR, Schultze M, Ratet P, Oldroyd GE. 2007. Medicago truncatula NIN is essential for rhizobial-independent nodule organogenesis induced by autoactive calcium/calmodulin-dependent protein kinase. Plant Physiology 144: 324-335.
      Murakami E, Cheng J, Gysel K, Bozsoki Z, Kawaharada Y, Hjuler CT, Sorensen KK, Tao K, Kelly S, Venice F. 2018. Epidermal LysM receptor ensures robust symbiotic signaling in Lotus japonicus. eLife 7: e33506.
      Peiter E, Sun J, Heckmann AB, Venkateshwaran M, Riely BK, Otegui MS, Edwards A, Freshour G, Hahn MG, Cook DR et al. 2007. The Medicago truncatula DMI1 protein modulates cytosolic calcium signaling. Plant Physiology 145: 192-203.
      Radhakrishnan G, Keller J, Rich MK, Vernié T, Mbadinga Mbadinga DL, Vigneron N, Cottret L, San Clemente H, Libourel C, Cheema J et al. 2020. An ancestral signaling pathway is conserved in intracellular symbioses-forming plant lineages. Nature Plants 6: 280-289.
      Rose CM, Venkateshwaran M, Vokening JD, Grimsrud PA, Maeda J, Bailey DJ, Park K, Howes-Podoll M, den Os D, Yeun LH et al. 2012. Rapid phosphoproteomic and transcriptomic changes in the rhizobia-legume symbiosis. Molecular Cell Proteomics 11: 724-744.
      Roy S, Liu W, Nandety RS, Crook A, Mysore KS, Pislariu CI, Frugoli J, Dicstein R, Udvardi MK. 2020. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell 32: 15-41.
      Rübsam H, Krönauer C, Abel NJB, Ji H, Lironi D, Hansen SB, Nadzieja M, Kolte MV, Abel D, Jong ND. 2023. Nanobody-driven signaling reveals the core receptor complex in root nodule symbiosis. Science 379: 272-277.
      Saito K, Yoshikawa M, Yano K, Miwa H, Uchida H, Asamizu E, Sato S, Tabata S, Imaizumi-Anraku H, Umehara Y et al. 2007. NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbiosis, and seed production in Lotus japonicus. Plant Cell 19: 610-624.
      Schauser L, Roussis A, Stiller J, Stougaard J. 1999. A plant regulator controlling development of symbiotic root nodules. Nature 402: 191-195.
      Singh S, Katzer K, Lambert J, Cerri M, Parniske M. 2014. CYCLOPS, a DNA-binding transcriptional activator, orchestrates symbiotic root nodule development. Cell Host & Microbe 15: 139-152.
      Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K et al. 2002. A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417: 959-962.
      Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, Xu W, Su Z. 2017. agriGO v.2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Research 45: W122-W129.
      Tirichine L, Imaizumi-Anraku H, Yoshida S, Murakami Y, Madsen LH, Miwa H, Nakagawa T, Sandal N, Albrektsen AS, Kawaguchi M et al. 2006. Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development. Nature 44: 1153-1156.
      Valdés-López O, Jayaraman D, Maeda J, Delaux PM, Venkateshwaran M, Isidra-Arellano MC, Reyero-Saavedra MDR, Sánchez-Correa MDS, Verastegui-Vidal MA, Delgado-Buenrostro N et al. 2019. A novel positive regulator of the early stages of root nodule symbiosis identified by phosphoproteomics. Plant & Cell Physiology 60: 575-586.
      Venkateshwaran M, Jayaraman D, Chabaud M, Genre A, Ballon AJ, Maeda J, Forshey K, den Os D, Kwiecien NW, Coon JJ et al. 2015. A role for the mevalonate pathway in early plant symbiotic signaling. Proceedings of the National Academy of Sciences, USA 112: 9781-9786.
      Wan X, Hontelez J, Lillo A, Guarneiro C, van de Peut D, Federova E, Bisseling T, Franssen H. 2007. Medicago truncatula ENOD40-1 and ENOD40-2 are both involved in nodule initiation and bacteroid development. Journal of Experimental Botany 58: 2033-2041.
      Wang D, Dong W, Murray J, Wang E. 2022. Innovation and appropriation in mycorrhizal and rhizobial symbioses. Plant Cell 34: 1573-1599.
    • Grant Information:
      OPP1172165 Bill and Melinda Gates Foundation; DE-SC0018247 DOE; 101001675 European Union's Horizon 2020; ANR-10-LABX-41 Laboratoire d'Excellence TULIP; 2010789 NSF-IOS; IN201320 Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica
    • Contributed Indexing:
      Keywords: Medicago truncatula; MtDMI1; MtDMI2; MtDMI3; common symbiosis signaling pathway; root nodule symbiosis
    • Accession Number:
      0 (Plant Proteins)
    • Publication Date:
      Date Created: 20231127 Date Completed: 20240112 Latest Revision: 20240112
    • Publication Date:
      20240112
    • Accession Number:
      10.1111/nph.19423
    • Accession Number:
      38009302