Bipolar ionization rapidly inactivates real-world, airborne concentrations of infective respiratory viruses.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Sobek E;Sobek E; Elias DA; Elias DA
  • Source:
    PloS one [PLoS One] 2023 Nov 22; Vol. 18 (11), pp. e0293504. Date of Electronic Publication: 2023 Nov 22 (Print Publication: 2023).
  • Publication Type:
    Journal Article
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
    • Publication Information:
      Original Publication: San Francisco, CA : Public Library of Science
    • Subject Terms:
    • Abstract:
      The SARS-CoV-2 (COVID-19) pandemic has highlighted the urgent need for strategies that rapidly inactivate airborne respiratory viruses and break the transmission cycle of indoor spaces. Air ions can reduce viable bacteria, mold, and virus counts, however, most studies use small test enclosures with target microbes and ion sources in close vicinity. To evaluate ion performance in real-world spaces, experiments were conducted in a large, room-size BSL-3 Chamber. Negative and positive ions were delivered simultaneously using a commercially available bipolar air ion device. The device housed Needle Point Bipolar ionization (NPBI) technology. Large chamber studies often use unrealistically high virus concentrations to ensure measurable virus is present at the trial end. However, excessively high viral concentrations bias air cleaning devices towards underperformance. Hence, devices that provide a substantial impact for protecting occupants in real-world spaces with real-world virus concentrations are often dismissed as poor performers. Herein, both real-world and excessive virus concentrations were studied using Influenza A and B, Human Respiratory Syncytial Virus (RSV), and the SARS-CoV-2 Alpha and Delta strains. The average ion concentrations ranged from 4,100 to 24,000 per polarity over 60-minute and 30-minute time trials. The reduction rate was considerably greater for trials that used real-world virus concentrations, reducing infectivity for Influenza A and B, RSV, and SARS-CoV-2 Delta by 88.3-99.98% in 30 minutes, whereas trials using in-excess concentrations showed 49.5-61.2% in 30 minutes. These findings strongly support the addition of NPBI ion technology to building management strategies aimed to protect occupants from contracting and spreading infective respiratory viruses indoors.
      Competing Interests: The authors have declared that no competing interests exist.
      (Copyright: © 2023 Sobek, Elias. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
    • References:
      Nature. 2020 Dec;588(7838):498-502. (PMID: 32805734)
      Acta Paediatr. 2006 Jul;95(7):778-84. (PMID: 16801171)
      medRxiv. 2021 Feb 21;:. (PMID: 33594385)
      Vaccine. 2007 Jun 28;25(27):5086-96. (PMID: 17544181)
      J Hazard Mater. 2022 Mar 5;425:128051. (PMID: 34910996)
      Environ Int. 2020 Aug;141:105794. (PMID: 32416374)
      Exp Mol Med. 2020 Mar;52(3):318-328. (PMID: 32203103)
      Environ Health Perspect. 2021 Apr;129(4):47002. (PMID: 33793301)
      Nat Microbiol. 2021 Jul;6(7):821-823. (PMID: 34108654)
      Science. 2021 Aug 27;373(6558):. (PMID: 34446582)
      Int J Infect Dis. 2021 Feb;103:37-41. (PMID: 33227512)
      Ann Occup Hyg. 2012 Jan;56(1):92-101. (PMID: 21859950)
      PLoS One. 2013;8(2):e54445. (PMID: 23457451)
      Nat Commun. 2020 May 29;11(1):2800. (PMID: 32472043)
      ACS Omega. 2021 Mar 05;6(10):6509-6527. (PMID: 33748563)
      JAMA. 2021 Feb 9;325(6):529-531. (PMID: 33404586)
      J Infect. 2011 Jan;62(1):1-13. (PMID: 21094184)
      Clin Infect Dis. 2021 May 18;72(10):e652-e654. (PMID: 32857833)
      Ann Work Expo Health. 2021 Jan 14;65(1):53-62. (PMID: 32820333)
      Sci Total Environ. 2021 Jun 15;773:145525. (PMID: 33940729)
      Clin Infect Dis. 2022 May 30;74(10):1722-1728. (PMID: 34358292)
      Curr Protoc Microbiol. 2008 Nov;Appendix 4:Appendix 4E. (PMID: 19016439)
      BMC Med. 2020 May 7;18(1):124. (PMID: 32375776)
      Environ Chem Lett. 2022;20(4):2215-2225. (PMID: 35069059)
      Nature. 2021 Jul;595(7869):707-712. (PMID: 34098568)
      Sci Total Environ. 2020 Aug 10;729:138474. (PMID: 32498152)
      J Gen Virol. 1998 Sep;79 ( Pt 9):2221-9. (PMID: 9747732)
      Occup Environ Med. 2001 Mar;58(3):211-6, 199. (PMID: 11171936)
      PLoS Comput Biol. 2020 Jun 25;16(6):e1007892. (PMID: 32584807)
      Environ Res. 2020 Sep;188:109861. (PMID: 32718835)
      J R Soc Interface. 2011 Aug 7;8(61):1176-84. (PMID: 21300628)
      Environ Int. 2020 Dec;145:106112. (PMID: 32927282)
      Influenza Other Respir Viruses. 2017 Mar;11(2):122-129. (PMID: 28058797)
      J Glob Infect Dis. 2009 Jan;1(1):51-6. (PMID: 20300388)
      FEMS Microbiol Lett. 2021 Sep 1;368(16):. (PMID: 34459482)
      J Breath Res. 2021 Sep 27;15(4):. (PMID: 34507310)
      Biotechnol Adv. 2008 Nov-Dec;26(6):610-7. (PMID: 18775485)
    • Accession Number:
      0 (Ions)
    • Publication Date:
      Date Created: 20231122 Date Completed: 20231124 Latest Revision: 20231124
    • Publication Date:
      20231124
    • Accession Number:
      PMC10664916
    • Accession Number:
      10.1371/journal.pone.0293504
    • Accession Number:
      37992037