References: Calero M, Blázquez G, Martín-Lara MA (2011) Kinetic modeling of the biosorption of lead(II) from aqueous solutions by solid waste resulting from the olive oil production. J Chem Eng Data 56:3053–3060. https://doi.org/10.1021/je200109k. (PMID: 10.1021/je200109k)
Chen X, Richard J, Liu Y, Dopp E, Tuerk J, Bester K (2012) Ozonation products of triclosan in advanced wastewater treatment. Water Res 46:2247–2256. https://doi.org/10.1016/j.watres.2012.01.039. (PMID: 10.1016/j.watres.2012.01.039)
Dar OI, Aslam R, Pan D, Sharma S, Andotra M, Kaur A, Jia A-Q, Faggio C (2022) Source, bioaccumulation, degradability and toxicity of triclosan in aquatic environments: a review. Environ Technol Innov 25:102122. https://doi.org/10.1016/j.eti.2021.102122. (PMID: 10.1016/j.eti.2021.102122)
Jang J, Lee DS (2016) Enhanced adsorption of cesium on PVA-alginate encapsulated Prussian blue-graphene oxide hydrogel beads in a fixed-bed column system. Bioresour Technol 218:294–300. https://doi.org/10.1016/j.biortech.2016.06.100. (PMID: 10.1016/j.biortech.2016.06.100)
Jang J, Lee DS (2019) Effective phosphorus removal using chitosan/Ca-organically modified montmorillonite beads in batch and fixed-bed column studies. J Hazard Mater 375:9–18. https://doi.org/10.1016/j.jhazmat.2019.04.070. (PMID: 10.1016/j.jhazmat.2019.04.070)
Ji Z, Sun H, Zhu Y, Zhang D, Wang L, Dai F, Zhao Y, Chen L (2021) Enhanced selective removal of lead ions using a functionalized PAMAM@UiO-66-NH2 nanocomposite: experiment and mechanism. MIcropor Mesopor mat 328:111433. https://doi.org/10.1016/j.micromeso.2021.111433. (PMID: 10.1016/j.micromeso.2021.111433)
Jin J, Sun J, Lv K, Huang X, Wang J, Liu J, Bai Y, Guo X, Zhao J, Liu J, Hou Q (2021) Magnetic-responsive CNT/chitosan composite as stabilizer and adsorbent for organic contaminants and heavy metal removal. J Mol Liq 334:116087. https://doi.org/10.1016/j.molliq.2021.116087. (PMID: 10.1016/j.molliq.2021.116087)
Li B, Zhang Y, Krishna R, Yao K, Han Y, Wu Z, Ma D, Shi Z, Pham T, Space B, Liu J, Thallapally PK, Liu J, Chrzanowski M, Ma S (2014) Introduction of pi-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane. J Am Chem Soc 136:8654–8660. https://doi.org/10.1021/ja502119z. (PMID: 10.1021/ja502119z)
Li Y, Liu S, Wang C, Ying Z, Huo M, Yang W (2020a) Effective column adsorption of triclosan from pure water and wastewater treatment plant effluent by using magnetic porous reduced graphene oxide. J Hazard Mater 386:121942. https://doi.org/10.1016/j.jhazmat.2019.121942. (PMID: 10.1016/j.jhazmat.2019.121942)
Li Y, Song J, Jiang M, Bawa M, Wang X, Tian Y, Zhu G (2020b) The fabrication of IMo6@iPAF-1 as an enzyme mimic in heterogeneous catalysis for oxidative desulfurization under O-2 or air. J Mater Chem a 8:9813–9824. https://doi.org/10.1039/c9ta14066b. (PMID: 10.1039/c9ta14066b)
Lim Y, Kim B, Jang J, Lee DS (2022) Buckwheat hull-derived biochar immobilized in alginate beads for the adsorptive removal of cobalt from aqueous solutions. J Hazard Mater 436:129245. https://doi.org/10.1016/j.jhazmat.2022.129245. (PMID: 10.1016/j.jhazmat.2022.129245)
Ma J, Zhao J, Zhu Z, Li L, Yu F (2019) Effect of microplastic size on the adsorption behavior and mechanism of triclosan on polyvinyl chloride. Environ Pollut 254:113104. https://doi.org/10.1016/j.envpol.2019.113104. (PMID: 10.1016/j.envpol.2019.113104)
Mai DD, Bui TH, Huan Pham V, Bui TH, Pham TK, Nguyen DC, Nguyen TL (2022) Simultaneous adsorption of heavy metals on mesoporous reduced graphene oxide/γ-Fe2O3 nanocomposites. J Porous Mat 29:1947–1956. https://doi.org/10.1007/s10934-022-01306-1. (PMID: 10.1007/s10934-022-01306-1)
Price H, Adams E, Quilliam RS (2019) The difference a day can make: the temporal dynamics of drinking water access and quality in urban slums. Sci Total Environ 671:818–826. https://doi.org/10.1016/j.scitotenv.2019.03.355. (PMID: 10.1016/j.scitotenv.2019.03.355)
Song JY, Jhung SH (2017) Adsorption of pharmaceuticals and personal care products over metal-organic frameworks functionalized with hydroxyl groups: quantitative analyses of H-bonding in adsorption. Chem Eng J 322:366–374. https://doi.org/10.1016/j.cej.2017.04.036. (PMID: 10.1016/j.cej.2017.04.036)
Song J, Li Y, Cao P, Jing X, Faheem M, Matsuo Y, Zhu Y, Tian Y, Wang X, Zhu G (2019) Synergic catalysts of polyoxometalate@cationic porous aromatic frameworks: reciprocal modulation of both capture and conversion materials. Adv Mater 31:1902444. https://doi.org/10.1002/adma.201902444. (PMID: 10.1002/adma.201902444)
Tian Y, Song J, Zhu Y, Zhao H, Muhammad F, Ma T, Chen M, Zhu G (2019) Understanding the desulphurization process in an ionic porous aromatic framework. Chem Sci 10:606–613. https://doi.org/10.1039/c8sc03727b. (PMID: 10.1039/c8sc03727b)
Wang S, Wang J (2019) Activation of peroxymonosulfate by sludge-derived biochar for the degradation of triclosan in water and wastewater. Chem Eng J 356:350–358. https://doi.org/10.1016/j.cej.2018.09.062. (PMID: 10.1016/j.cej.2018.09.062)
Wang Q, Yang Z (2016) Industrial water pollution, water environment treatment, and health risks in China. Environ Pollut 218:358–365. https://doi.org/10.1016/j.envpol.2016.07.011. (PMID: 10.1016/j.envpol.2016.07.011)
Wang C, Yan J, Ma Z, Wang Z (2022) Highly efficient separation of ethylene/ethane in microenvironment-modulated microporous polymers. Sep Purif Technol 287:120580. https://doi.org/10.1016/j.seppur.2022.120580. (PMID: 10.1016/j.seppur.2022.120580)
Yan Z, Yuan Y, Tian Y, Zhang D, Zhu G (2015) Highly efficient enrichment of volatile iodine by charged porous aromatic frameworks with three sorption sites. Angew Chem Int Ed Engl 54:12733–12737. https://doi.org/10.1002/anie.201503362. (PMID: 10.1002/anie.201503362)
Yueh MF, Tukey RH (2016) Triclosan: A widespread environmental toxicant with many biological effects. Annu Rev Pharmacol Toxicol 56:251–272. https://doi.org/10.1146/annurev-pharmtox-010715-103417. (PMID: 10.1146/annurev-pharmtox-010715-103417)
Zhang X, Yang Y, Lv X, Wang Y, Liu N, Chen D, Cui L (2019) Adsorption/desorption kinetics and breakthrough of gaseous toluene for modified microporous-mesoporous UiO-66 metal organic framework. J Hazard Mater 366:140–150. https://doi.org/10.1016/j.jhazmat.2018.11.099. (PMID: 10.1016/j.jhazmat.2018.11.099)
Zhang P, Zou X, Song J, Tian Y, Zhu Y, Yu G, Yuan Y, Zhu G (2020) Anion substitution in porous aromatic frameworks: boosting molecular permeability and selectivity for membrane acetylene separation. Adv Mater 32:1907449. https://doi.org/10.1002/adma.201907449. (PMID: 10.1002/adma.201907449)
No Comments.