Effective triclosan removal by using porous aromatic frameworks in continuous fixed-bed column studies.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Li Y;Li Y;Li Y; Gong F; Gong F; Yang W; Yang W; Liu B; Liu B
  • Source:
    Environmental science and pollution research international [Environ Sci Pollut Res Int] 2023 Dec; Vol. 30 (57), pp. 121007-121013. Date of Electronic Publication: 2023 Nov 10.
  • Publication Type:
    Journal Article
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
    • Publication Information:
      Publication: <2013->: Berlin : Springer
      Original Publication: Landsberg, Germany : Ecomed
    • Subject Terms:
    • Abstract:
      Triclosan (TCS) has been regarded as an emerging contaminant in aquatic systems, making its efficient removal of great significance. In this study, NPVMo@iPAF-1, with a specific surface area of 665 m 2 /g, was prepared by incorporating (NH 4 ) 5 H 6 PV 8 Mo 4 O 40 into porous aromatic frameworks (PAF). The maximum adsorption capacity of TCS on NPVMo@iPAF-1 reached 917.1 mg/g, as calculated from the Langmuir model. Fixed-bed columns packed with NPVMo@iPAF-1 were employed for TCS removal; the experiment data strongly correlated with the Thomas and Yoon-Nelson models under different operational conditions. Pore preservation, electrostatic effects, and the synergistic effect of π-π interactions contributed to the effective adsorption of TCS onto NPVMo@iPAF-1. The NPVMo@iPAF-1 fixed-bed column could be effectively regenerated through in-situ ozonation for more than 10 regeneration cycles. NPVMo@iPAF-1 turned out to be a promising adsorbent for removing TCS not only from pure water but also from reclaimed water and surface water samples.
      (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Calero M, Blázquez G, Martín-Lara MA (2011) Kinetic modeling of the biosorption of lead(II) from aqueous solutions by solid waste resulting from the olive oil production. J Chem Eng Data 56:3053–3060. https://doi.org/10.1021/je200109k. (PMID: 10.1021/je200109k)
      Chen X, Richard J, Liu Y, Dopp E, Tuerk J, Bester K (2012) Ozonation products of triclosan in advanced wastewater treatment. Water Res 46:2247–2256. https://doi.org/10.1016/j.watres.2012.01.039. (PMID: 10.1016/j.watres.2012.01.039)
      Dar OI, Aslam R, Pan D, Sharma S, Andotra M, Kaur A, Jia A-Q, Faggio C (2022) Source, bioaccumulation, degradability and toxicity of triclosan in aquatic environments: a review. Environ Technol Innov 25:102122. https://doi.org/10.1016/j.eti.2021.102122. (PMID: 10.1016/j.eti.2021.102122)
      Jang J, Lee DS (2016) Enhanced adsorption of cesium on PVA-alginate encapsulated Prussian blue-graphene oxide hydrogel beads in a fixed-bed column system. Bioresour Technol 218:294–300. https://doi.org/10.1016/j.biortech.2016.06.100. (PMID: 10.1016/j.biortech.2016.06.100)
      Jang J, Lee DS (2019) Effective phosphorus removal using chitosan/Ca-organically modified montmorillonite beads in batch and fixed-bed column studies. J Hazard Mater 375:9–18. https://doi.org/10.1016/j.jhazmat.2019.04.070. (PMID: 10.1016/j.jhazmat.2019.04.070)
      Ji Z, Sun H, Zhu Y, Zhang D, Wang L, Dai F, Zhao Y, Chen L (2021) Enhanced selective removal of lead ions using a functionalized PAMAM@UiO-66-NH2 nanocomposite: experiment and mechanism. MIcropor Mesopor mat 328:111433. https://doi.org/10.1016/j.micromeso.2021.111433. (PMID: 10.1016/j.micromeso.2021.111433)
      Jin J, Sun J, Lv K, Huang X, Wang J, Liu J, Bai Y, Guo X, Zhao J, Liu J, Hou Q (2021) Magnetic-responsive CNT/chitosan composite as stabilizer and adsorbent for organic contaminants and heavy metal removal. J Mol Liq 334:116087. https://doi.org/10.1016/j.molliq.2021.116087. (PMID: 10.1016/j.molliq.2021.116087)
      Li B, Zhang Y, Krishna R, Yao K, Han Y, Wu Z, Ma D, Shi Z, Pham T, Space B, Liu J, Thallapally PK, Liu J, Chrzanowski M, Ma S (2014) Introduction of pi-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane. J Am Chem Soc 136:8654–8660. https://doi.org/10.1021/ja502119z. (PMID: 10.1021/ja502119z)
      Li Y, Liu S, Wang C, Ying Z, Huo M, Yang W (2020a) Effective column adsorption of triclosan from pure water and wastewater treatment plant effluent by using magnetic porous reduced graphene oxide. J Hazard Mater 386:121942. https://doi.org/10.1016/j.jhazmat.2019.121942. (PMID: 10.1016/j.jhazmat.2019.121942)
      Li Y, Song J, Jiang M, Bawa M, Wang X, Tian Y, Zhu G (2020b) The fabrication of IMo6@iPAF-1 as an enzyme mimic in heterogeneous catalysis for oxidative desulfurization under O-2 or air. J Mater Chem a 8:9813–9824. https://doi.org/10.1039/c9ta14066b. (PMID: 10.1039/c9ta14066b)
      Lim Y, Kim B, Jang J, Lee DS (2022) Buckwheat hull-derived biochar immobilized in alginate beads for the adsorptive removal of cobalt from aqueous solutions. J Hazard Mater 436:129245. https://doi.org/10.1016/j.jhazmat.2022.129245. (PMID: 10.1016/j.jhazmat.2022.129245)
      Ma J, Zhao J, Zhu Z, Li L, Yu F (2019) Effect of microplastic size on the adsorption behavior and mechanism of triclosan on polyvinyl chloride. Environ Pollut 254:113104. https://doi.org/10.1016/j.envpol.2019.113104. (PMID: 10.1016/j.envpol.2019.113104)
      Mai DD, Bui TH, Huan Pham V, Bui TH, Pham TK, Nguyen DC, Nguyen TL (2022) Simultaneous adsorption of heavy metals on mesoporous reduced graphene oxide/γ-Fe2O3 nanocomposites. J Porous Mat 29:1947–1956. https://doi.org/10.1007/s10934-022-01306-1. (PMID: 10.1007/s10934-022-01306-1)
      Price H, Adams E, Quilliam RS (2019) The difference a day can make: the temporal dynamics of drinking water access and quality in urban slums. Sci Total Environ 671:818–826. https://doi.org/10.1016/j.scitotenv.2019.03.355. (PMID: 10.1016/j.scitotenv.2019.03.355)
      Song JY, Jhung SH (2017) Adsorption of pharmaceuticals and personal care products over metal-organic frameworks functionalized with hydroxyl groups: quantitative analyses of H-bonding in adsorption. Chem Eng J 322:366–374. https://doi.org/10.1016/j.cej.2017.04.036. (PMID: 10.1016/j.cej.2017.04.036)
      Song J, Li Y, Cao P, Jing X, Faheem M, Matsuo Y, Zhu Y, Tian Y, Wang X, Zhu G (2019) Synergic catalysts of polyoxometalate@cationic porous aromatic frameworks: reciprocal modulation of both capture and conversion materials. Adv Mater 31:1902444. https://doi.org/10.1002/adma.201902444. (PMID: 10.1002/adma.201902444)
      Tian Y, Song J, Zhu Y, Zhao H, Muhammad F, Ma T, Chen M, Zhu G (2019) Understanding the desulphurization process in an ionic porous aromatic framework. Chem Sci 10:606–613. https://doi.org/10.1039/c8sc03727b. (PMID: 10.1039/c8sc03727b)
      Wang S, Wang J (2019) Activation of peroxymonosulfate by sludge-derived biochar for the degradation of triclosan in water and wastewater. Chem Eng J 356:350–358. https://doi.org/10.1016/j.cej.2018.09.062. (PMID: 10.1016/j.cej.2018.09.062)
      Wang Q, Yang Z (2016) Industrial water pollution, water environment treatment, and health risks in China. Environ Pollut 218:358–365. https://doi.org/10.1016/j.envpol.2016.07.011. (PMID: 10.1016/j.envpol.2016.07.011)
      Wang C, Yan J, Ma Z, Wang Z (2022) Highly efficient separation of ethylene/ethane in microenvironment-modulated microporous polymers. Sep Purif Technol 287:120580. https://doi.org/10.1016/j.seppur.2022.120580. (PMID: 10.1016/j.seppur.2022.120580)
      Yan Z, Yuan Y, Tian Y, Zhang D, Zhu G (2015) Highly efficient enrichment of volatile iodine by charged porous aromatic frameworks with three sorption sites. Angew Chem Int Ed Engl 54:12733–12737. https://doi.org/10.1002/anie.201503362. (PMID: 10.1002/anie.201503362)
      Yueh MF, Tukey RH (2016) Triclosan: A widespread environmental toxicant with many biological effects. Annu Rev Pharmacol Toxicol 56:251–272. https://doi.org/10.1146/annurev-pharmtox-010715-103417. (PMID: 10.1146/annurev-pharmtox-010715-103417)
      Zhang X, Yang Y, Lv X, Wang Y, Liu N, Chen D, Cui L (2019) Adsorption/desorption kinetics and breakthrough of gaseous toluene for modified microporous-mesoporous UiO-66 metal organic framework. J Hazard Mater 366:140–150. https://doi.org/10.1016/j.jhazmat.2018.11.099. (PMID: 10.1016/j.jhazmat.2018.11.099)
      Zhang P, Zou X, Song J, Tian Y, Zhu Y, Yu G, Yuan Y, Zhu G (2020) Anion substitution in porous aromatic frameworks: boosting molecular permeability and selectivity for membrane acetylene separation. Adv Mater 32:1907449. https://doi.org/10.1002/adma.201907449. (PMID: 10.1002/adma.201907449)
    • Grant Information:
      2412019FZ020 Fundamental Research Funds for the Central Universities; 2021YJSB042 Tianjin Research Innovation Project for Postgraduate Students
    • Contributed Indexing:
      Keywords: Adsorption; Fixed-bed column; In situ regeneration; Porous aromatic frameworks; Reclaimed water; Triclosan
    • Accession Number:
      4NM5039Y5X (Triclosan)
      0 (Water Pollutants, Chemical)
      059QF0KO0R (Water)
    • Publication Date:
      Date Created: 20231110 Date Completed: 20231207 Latest Revision: 20231215
    • Publication Date:
      20231215
    • Accession Number:
      10.1007/s11356-023-30714-2
    • Accession Number:
      37947929