Interaction of contour geometry and optic flow in determining relative depth of surfaces.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: United States NLM ID: 101495384 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1943-393X (Electronic) Linking ISSN: 19433921 NLM ISO Abbreviation: Atten Percept Psychophys Subsets: MEDLINE
    • Publication Information:
      Publication: 2011- : New York : Springer
      Original Publication: Austin, Tex. : Psychonomic Society
    • Subject Terms:
    • Abstract:
      Dynamic occlusion, such as the accretion and deletion of texture near a boundary, is a major factor in determining relative depth of surfaces. However, the shape of the contour bounding the dynamic texture can significantly influence what kind of 3D shape, and what relative depth, are conveyed by the optic flow. This can lead to percepts that are inconsistent with traditional accounts of shape and depth from motion, where accreting/deleting texture can indicate the figural region, and/or 3D rotation can be perceived despite the constant speed of the optic flow. This suggests that the speed profile of the dynamic texture and the shape of its bounding contours combine to determine relative depth in a way that is not explained by existing models. Here, we investigated how traditional structure-from-motion principles and contour geometry interact to determine the relative-depth interpretation of dynamic textures. We manipulated the consistency of the dynamic texture with rotational or translational motion by varying the speed profile of the texture. In Experiment 1, we used a multi-region figure-ground display consisting of regions with dots moving horizontally in opposite directions in adjacent regions. In Experiment 2, we used stimuli including two regions separated by a common border, with dot textures moving horizontally in opposite directions. Both contour geometry (convexity) and the speed profile of the dynamic dot texture influenced relative-depth judgments, but contour geometry was the stronger factor. The results underscore the importance of contour geometry, which most current models disregard, in determining depth from motion.
      (© 2023. The Psychonomic Society, Inc.)
    • References:
      Barnes, T., & Mingolla, E. (2013). A neural model of visual figure and ground in dynamically deforming shapes. Neural Networks, 37, 141–164. (PMID: 10.1016/j.neunet.2012.09.01123098751)
      Beck, C., Ognibeni, T., & Neumann, H. (2008). Object segmentation from motion discontinuities and temporal occlusion - a biologically inspired model. PLoS ONE, 3, e3807. (PMID: 10.1371/journal.pone.0003807190436132586919)
      Berzhanskaya, J., Grossberg, S., & Mingolla, E. (2007). Laminar cortical dynamics of visual form and motion interactions during coherent object motion perception. Spatial Vision, 20, 337–395. (PMID: 10.1163/15685680778091900017594799)
      Brainard, D. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436. (PMID: 10.1163/156856897X003579176952)
      Braunstein, M. L., Andersen, G. J., & Riefer, D. M. (1982). The use of occlusion to resolve ambiguity in parallel projections. Perception & Psychophysics, 31, 261–267. (PMID: 10.3758/BF03202532)
      Burge, J., Peterson, M. A., & Palmer, S. E. (2005). Ordinal configural cues combine with metric disparity in depth perception. Journal of Vision, 5, 534–542. (PMID: 10.1167/5.6.516097866)
      Choi, R., Feldman, J., & Singh, M. (2023). A prior for convexity can override the rigidity assumption in structure-from-motion. Journal of Vision, XX, XXX.
      Erlikhman, G., Gurariy, G., Mruczek, R. E. B., & Caplovitz, G. P. (2016). The neural representation of objects formed through the spatiotemporal integration of visual transients. NeuroImage, 142, 67–78. https://doi.org/10.1016/j.neuroimage.2016.03.044. (PMID: 10.1016/j.neuroimage.2016.03.04427033688)
      Froyen, V., Feldman, J., & Singh, M. (2010). A Bayesian framework for figure-ground interpretation. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, & A. Culotta (Eds.), Advances in Neural Information Processing Systems 23 (pp. 631–639). Vancouver, British Columbia, Canada: Curran Associates volume.
      Froyen, V., Feldman, J., & Singh, M. (2013). Rotating columns: relating structure-from-motion, accretion/deletion, and figure/ground. Journal of Vision, 13, 1–12. (PMID: 10.1167/13.10.6)
      Froyen, V., Tanrikulu, Ö. D., Singh, M., & Feldman, J. (2012). Stereoslant: A novel method for measuring figure-ground. Journal of Vision, 12, 1295. https://doi.org/10.1167/12.9.1295. (PMID: 10.1167/12.9.1295)
      Gibson, J. (1966). The senses considered as perceptual systems. Boston: Houghton Mifflin.
      Gibson, J., Kaplan, G., Reynolds, H., & Wheeler, K. (1969). The change from visible to invisible: A study of optical transitions. Perception & Psychophysics, 5, 113–116. (PMID: 10.3758/BF03210533)
      Granrud, C. E., Yonas, A., Smith, I. M., Arterberry, M. E., Glicksman, M. L., & Sorknes, A. C. (1984). Infants’ sensitivity to accretion and deletion of texture as information for depth at an edge. Child Development, 55, 1630–6. (PMID: 10.2307/11300326488967)
      He, X. (2016). Structure from motion without projective consistency. Master’s thesis Rutgers, The State University of New Jersey.
      He, X., Feldman, J., & Singh, M. (2017). The influence of contour geometry on structure-from-motion: from symmetry to parallelism. Journal of Vision, 17, 414. https://doi.org/10.1167/17.10.414. (PMID: 10.1167/17.10.414)
      He, X., Feldman, J., & Singh, M. (2019). The strong influence of contour geometry in structure from motion (sfm). Journal of Vision, 19, 198a. https://doi.org/10.1167/19.10.198a. (PMID: 10.1167/19.10.198a)
      Hegdé, J., Albright, T., & Stoner, G. (2004). Second-order motion conveys depth-order information. Journal of Vision, 4, 838–842. (PMID: 10.1167/4.10.115595889)
      Hildreth, E., & Royden, C. (2011). Integrating multiple cues to depth order at object boundaries. Attention, Perception, & Psychophysics, 73, 2218–2235. (PMID: 10.3758/s13414-011-0172-0)
      Hoffman, D., & Singh, M. (1997). Salience of visual parts. Cognition, 63, 29–78. (PMID: 10.1016/S0010-0277(96)00791-39187064)
      Howard, I., & Rogers, B. (2002). Seeing in depth (Vol. 2). Porteous, Toronto, ON: Depth Perception. I.
      Johnson, S. P., & Mason, U. (2002). Perception of kinetic illusory contours by two-month infants. Child Development, 73, 22–34. (PMID: 10.1111/1467-8624.0038914717241)
      Kanizsa, G., & Gerbino, W. (1976). Convexity and symmetry in figure-ground organization. In M. Henle (Ed.), Vision and artifact (pp. 25–32). New York: Springer.
      Kaplan, G. (1969). Kinetic disruption of optical texture: The perception of depth at an edge. Attention, Perception, & Psychophysics, 6, 193–198. (PMID: 10.3758/BF03207015)
      Kleiner, M., Brainard, M., Pelli, D., Ingling, A., Murray, R., & Broussard, C. (2007). What is new in psychtoolbox 3. Perception, 36, 1–16.
      Koenderink, J. J., & van Doorn, A. J. (1982). The shape of smooth objects and the way contours end. Perception, 11, 129–137. https://doi.org/10.1068/p110129. (PMID: 10.1068/p1101297155766)
      Layton, O., Mingolla, E., & Yazdanbakhsh, A. (2012). Dynamic coding of border-ownership in visual cortex. Journal of Vision, 12, 8. https://doi.org/10.1167/12.13.8. (PMID: 10.1167/12.13.823220579)
      Layton, O., Mingolla, E., & Yazdanbakhsh, A. (2014). Neural dynamics of feedforward and feedback processing in figure-ground segregation. Frontiers in Psychology, 5,. https://doi.org/10.3389/fpsyg.2014.00972.
      Layton, O., & Yazdanbakhsh, A. (2015). A neural model of border-ownership from kinetic occlusion. Vision Research, 106, 64–80. (PMID: 10.1016/j.visres.2014.11.00225448117)
      Liu, Z., Jacobs, D., & Basri, R. (1989). The role of convexity in perceptual completion: beyond good continuation. Vision Research, 39, 4244–4257.
      McFadden, D. (1974). Conditional logit analysis of qualitative choice behaviour. In P. Zarembka (Ed.), Frontiers in econometrics (pp. 104–142). New York: Academic Press.
      Metzger, F. (1936/2006). Laws of Seeing. (L. Spillmann and S. Lehar and M Stromeyer and M. Wertheimer, Trans.): Massachusetts Institute of Technology, Cambridge, MA (Original work published 1936).
      Morinaga, S. (1941). Beobachtungen über grundlagen und wirkungen anschaulich gleichmäßiger breite. Archiv für die gesamte Psychologie, 110, 309–348.
      Mutch, K., & Thompson, W. (1985). Analysis of accretion and deletion at boundaries in dynamic scenes. Pattern Analysis and Machine Intelligence, IEEE Transactions, 2, 133–138. (PMID: 10.1109/TPAMI.1985.4767638)
      Niyogi, S. (1995). Detecting kinetic occlusion. Cambridge, MA: Massachusetts Institute of Technology. (PMID: 10.1109/ICCV.1995.466819)
      Norman, J. F., Todd, J. T., & Orban, G. A. (2012). Perception of three-dimensional shape from specular highlights, deformations of shading, and other types of visual information. Psychological Science, 15, 565–570. https://doi.org/10.1111/j.0956-7976.2004.00720.x. (PMID: 10.1111/j.0956-7976.2004.00720.x)
      Ono, H., Rogers, B., Ohmi, M., & Ono, M. (1988). Dynamic occlusion and motion parallax in depth perception. Perception, 17, 255–266. (PMID: 10.1068/p1702553226867)
      Peterson, M. A., & Salvagio, E. (2008). Inhibitory competition in figure-ground perception: Context and convexity. Journal of Vision, 8, 4. https://doi.org/10.1167/8.16.4. (PMID: 10.1167/8.16.4)
      Profitt, D. R., Bertenthal, B. I., & Roberts, R. J. (1984). The role of occlusion in reducing multistability in moving point-light displays. Perception & Psychophysics, 36, 315–323. (PMID: 10.3758/BF03202783)
      Ramachandran, V. S., Cobb, S., & Rogers-Ramachandran, D. (1988). Perception of 3-d structure from motion: The role of velocity gradients and segmentation boundaries. Attention, Perception, & Psychophysics, 44, 390–393. (PMID: 10.3758/BF03210423)
      Raudies, F., & Neumann, H. (2010). A neural model of the temporal dynamics of figure-ground segregation in motion perception. Neural Networks, 23, 160–176. (PMID: 10.1016/j.neunet.2009.10.00519931405)
      Royden, C. S., Baker, J. F., & Allman, J. (1988). Perception of depth elicited by occluded and shearing motions of random dots. Perception, 17, 289–296. (PMID: 10.1068/p1702893226870)
      Rubin, E. (1915/1958). Figure and ground. In D. Beardslee, & M. Wertheimer (Eds.), Readings in perception (pp. 194–203). Princeton, NJ: Van Nostrand (Original work published 1915).
      Ruda, H., Livitz, G., Riesen, G., & Mingolla, E. (2015). Computational modeling of depth ordering in occlusion through accretion or deletion of texture. Journal of Vision, 15, 20. (PMID: 10.1167/15.9.2026230982)
      Sperling, G., Landy, M., Dosher, B., & Perkins, M. (1989). Kinetic depth effect and identification of shape. Journal of Experimental Psychology: Human Perception and Performance, 15, 826–840.
      Tanrikulu, O. D., Froyen, V., Feldman, J., & Singh, M. (2016). Geometric figure-ground cues override standard depth from accretion-deletion. Journal of Vision, 16, 1–15. (PMID: 10.1167/16.5.15)
      Tanrikulu, O. D., Froyen, V., Feldman, J., & Singh, M. (2018). When is accreting/deleting texture seen as in front? interpretation of depth from texture motion when is accreting/deleting texture seen as in front? interpretation of depth from texture motion. Perception, 0, 1–28.
      Tanrikulu, O. D., Froyen, V., Feldman, J., & Singh, M. (2022). The interpretation of dynamic occlusion: Combining contour geometry and accretion/deletion of texture. Vision Research, .
      Thompson, W., Kersten, D., & Knecht, W. R. (1992). Structure-from-motion based on information at surface boundaries. Biological Cybernetics, 66, 327–333. (PMID: 10.1007/BF00203669)
      Thompson, W., Mutch, K., & Berzins, V. (1985). Dynamical occlusion analysis in optical flow fields. Pattern Analysis and Machine Intelligence, IEEE Transactions, 4, 374–383. (PMID: 10.1109/TPAMI.1985.4767677)
      Todd, J. T. (2004). The visual perception of 3d shape. Trends in Cognitive Sciences, 8, 115–121. https://doi.org/10.1016/j.tics.2004.01.006. (PMID: 10.1016/j.tics.2004.01.00615301751)
      Ullman, S. (1979). The interpretation of structure from motion. In Proceedings of the Royal Society of London (pp. 405–426). The Royal Society volume 203 of Series B, Biological Sciences.
      Vecera, S. P., Vogel, E. K., & Woodman, G. F. (2002). Lower region: a new cue for figure-ground assignment. Journal of Experimental Psychology: General, 131, 194–205.
      Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E., Peterson, M. A., Singh, M., & von der Heydt, R. (2012). A century of gestalt psychology in visual perception: 1. perceptual grouping and figure-ground organization. Psychological Bulletin, 138, 1172–217.
      Yoonessi, A., & Baker, C. L., Jr. (2013). Depth perception from dynamic occlusion in motion parallax: Roles of expansion-compression versus accretion-deletion. Journal of Vision, 13, 10. https://doi.org/10.1167/13.12.10. (PMID: 10.1167/13.12.10241302594521857)
      Zhou, H., Friedman, H., & von der Heydt, R. (2000). Coding of border ownership in monkey visual cortex. Journal of Neuroscience, 20, 6594–6611. https://doi.org/10.1523/JNEUROSCI.20-17-06594.2000. (PMID: 10.1523/JNEUROSCI.20-17-06594.200010964965)
    • Grant Information:
      EY021494 United States GF NIH HHS
    • Contributed Indexing:
      Keywords: Depth; Figure/ground; Optic flow; Perceptual organization; Structure-from-motion
    • Publication Date:
      Date Created: 20231107 Date Completed: 20240108 Latest Revision: 20240108
    • Publication Date:
      20240108
    • Accession Number:
      10.3758/s13414-023-02807-0
    • Accession Number:
      37935897