Menu
×
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 5:30 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 4 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 5:30 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 4 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
The dual-action mechanism of Arabidopsis cryptochromes.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Qu GP;Qu GP; Jiang B; Jiang B; Jiang B; Lin C; Lin C
- Source:
Journal of integrative plant biology [J Integr Plant Biol] 2024 May; Vol. 66 (5), pp. 883-896. Date of Electronic Publication: 2024 Jan 02.- Publication Type:
Journal Article; Review- Language:
English - Source:
- Additional Information
- Source: Publisher: Wiley-Blackwell Pub Country of Publication: China (Republic : 1949- ) NLM ID: 101250502 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1744-7909 (Electronic) Linking ISSN: 16729072 NLM ISO Abbreviation: J Integr Plant Biol Subsets: MEDLINE
- Publication Information: Publication: [China] : Wiley-Blackwell Pub
Original Publication: [Carlton South, Victoria] : Blackwell Pub., 2005- - Subject Terms:
- Abstract: Photoreceptor cryptochromes (CRYs) mediate blue-light regulation of plant growth and development. It has been reported that Arabidopsis CRY1and CRY2 function by physically interacting with at least 84 proteins, including transcription factors or co-factors, chromatin regulators, splicing factors, messenger RNA methyltransferases, DNA repair proteins, E3 ubiquitin ligases, protein kinases and so on. Of these 84 proteins, 47 have been reported to exhibit altered binding affinity to CRYs in response to blue light, and 41 have been shown to exhibit condensation to CRY photobodies. The blue light-regulated composition or condensation of CRY complexes results in changes of gene expression and developmental programs. In this mini-review, we analyzed recent studies of the photoregulatory mechanisms of Arabidopsis CRY complexes and proposed the dual mechanisms of action, including the "Lock-and-Key" and the "Liquid-Liquid Phase Separation (LLPS)" mechanisms. The dual CRY action mechanisms explain, at least partially, the structural diversity of CRY-interacting proteins and the functional diversity of the CRY photoreceptors.
(© 2023 The Authors. Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.) - References: Ahmad, M., and Cashmore, A.R. (1993). HY4 gene of A. thaliana encodes a protein with characteristics of a blue‐light photoreceptor. Nature 366: 162–166.
Ahmad, M., Jarillo, J.A., and Cashmore, A.R. (1998a). Chimeric proteins between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability. Plant Cell 10: 197–207.
Ahmad, M., Jarillo, J.A., Smirnova, O., and Cashmore, A.R. (1998b). The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro. Mol. Cell 1: 939–948.
Ang, L.H., Chattopadhyay, S., Wei, N., Oyama, T., Okada, K., Batschauer, A., and Deng, X.W. (1998). Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol. Cell 1: 213–222.
Botto, J.F., Alonso‐Blanco, C., Garzarón, I., Sánchez, R.A., and Casal, J.J. (2003). The cape verde islands allele of cryptochrome 2 enhances cotyledon unfolding in the absence of blue light in Arabidopsis. Plant Physiol. 133: 1547–1556.
Brautigam, C.A., Smith, B.S., Ma, Z., Palnitkar, M., Tomchick, D.R., Machius, M., and Deisenhofer, J. (2004). Structure of the photolyase‐like domain of cryptochrome 1 from Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 101: 12142–12147.
Cao, X., Xu, P., Liu, Y., Yang, G., Liu, M., Chen, L., Cheng, Y., Xu, P., Miao, L., Mao, Z., et al. (2021). Arabidopsis cryptochrome 1 promotes stomatal development through repression of AGB1 inhibition of SPEECHLESS DNA‐binding activity. J. Integr. Plant Biol. 63: 1967–1981.
Carlson, K.D., Bhogale, S., Anderson, D., Tomanek, L., and Madlung, A. (2019). Phytochrome A regulates carbon flux in dark grown tomato seedlings. Front. Plant Sci. 10: 152.
Cashmore, A.R. (2003). Cryptochromes: Enabling plants and animals to determine circadian time. Cell 114: 537–543.
Cashmore, A.R., Jarillo, J.A., Wu, Y.J., and Liu, D. (1999). Cryptochromes: Blue light receptors for plants and animals. Science 284: 760–765.
Chaves, I., Pokorny, R., Byrdin, M., Hoang, N., Ritz, T., Brettel, K., Essen, L.O., van der Horst, G.T., Batschauer, A., and Ahmad, M. (2011). The cryptochromes: Blue light photoreceptors in plants and animals. Annu. Rev. Plant Biol. 62: 335–364.
Chen, D., Lyu, M., Kou, X., Li, J., Yang, Z., Gao, L., Li, Y., Fan, L.‐M., Shi, H., and Zhong, S. (2022). Integration of light and temperature sensing by liquid‐liquid phase separation of phytochrome B. Mol. Cell 82: 3015–3029.
Chen, M., and Chory, J. (2011). Phytochrome signaling mechanisms and the control of plant development. Trends Cell Biol. 21: 664–671.
Chen, M., Chory, J., and Fankhauser, C. (2004). Light signal transduction in higher plants. Annu. Rev. Genet. 38: 87–117.
Chen, Y., Hu, X., Liu, S., Su, T., Huang, H., Ren, H., Gao, Z., Wang, X., Lin, D., Wohlschlegel, J.A., et al. (2021). Regulation of Arabidopsis photoreceptor CRY2 by two distinct E3 ubiquitin ligases. Nat. Commun. 12: 2155.
Christie, J.M. (2007). Phototropin blue‐light receptors. Annu. Rev. Plant Biol. 58: 21–45.
Daviere, J.M., and Achard, P. (2013). Gibberellin signaling in plants. Development 140: 1147–1151.
Devlin, P.F., and Kay, S.A. (2000). Cryptochromes are required for phytochrome signaling to the circadian clock but not for rhythmicity. Plant Cell 12: 2499–2509.
Dignon, G.L., Best, R.B., and Mittal, J. (2020). Biomolecular phase separation: From molecular driving forces to macroscopic properties. Annu. Rev. Phys. Chem. 71: 53–75.
Du, S.S., Li, L., Li, L., Wei, X., Xu, F., Xu, P., Wang, W., Xu, P., Cao, X., Miao, L., et al. (2020). Photoexcited cryptochrome2 interacts directly with TOE1 and TOE2 in flowering regulation. Plant Physiol. 184: 487–505.
Emenecker, R.J., Holehouse, A.S., and Strader, L.C. (2020). Emerging roles for phase separation in plants. Dev. Cell 55: 69–83.
Emenecker, R.J., Holehouse, A.S., and Strader, L.C. (2021). Biological phase separation and biomolecular condensates in plants. Annu. Rev. Plant Biol. 72: 17–46.
Fischer, E. (1894). Einfluss der configuration auf die wirkung der enzyme. Ber. Dtsch. Chem. Ges. 27: 2985–2993.
Gao, J., Zhang, R., Zheng, L., Song, L., Ji, M., Li, S., Wang, J., Yang, J., Kang, G., Zhang, P., et al. (2023). Blue light receptor CRY1 regulates HSFA1d nuclear localization to promote plant thermotolerance. Cell Rep. 42: 113117.
Gao, L., Liu, Q., Zhong, M., Zeng, N., Deng, W., Li, Y., Wang, D., Liu, S., and Wang, Q. (2022). Blue light‐induced phosphorylation of Arabidopsis cryptochrome 1 is essential for its photosensitivity. J. Integr. Plant Biol. 64: 1724–1738.
Guo, H., Duong, H., Ma, N., and Lin, C. (1999). The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light‐dependent post‐transcriptional mechanism. Plant J. 19: 279–287.
Guo, H., Yang, H., Mockler, T.C., and Lin, C. (1998). Regulation of flowering time by Arabidopsis photoreceptors. Science 279: 1360–1363.
Guo, T., Liu, M., Chen, L., Liu, Y., Li, L., Li, Y., Cao, X., Mao, Z., Wang, W., and Yang, H.Q. (2023). Photoexcited cryptochromes interact with ADA2b and SMC5 to promote the repair of DNA double‐strand breaks in Arabidopsis. Nat. Plants 9: 1280–1290.
Han, X., Chang, X., Zhang, Z., Chen, H., He, H., Zhong, B., and Deng, X.W. (2019). Origin and evolution of core components responsible for monitoring light environment changes during plant terrestrialization. Mol. Plant 12: 847–862.
Han, X., Huang, X., and Deng, X.W. (2020). The photomorphogenic central repressor COP1: Conservation and functional diversification during evolution. Plant Commun. 1: 100044.
He, G., Liu, J., Dong, H., and Sun, J. (2019). The blue‐light receptor CRY1 interacts with BZR1 and BIN2 to modulate the phosphorylation and nuclear function of BZR1 in repressing BR signaling in Arabidopsis. Mol. Plant 12: 689–703.
He, Y., Yu, Y., Wang, X., Qin, Y., Su, C., and Wang, L. (2022). Aschoff's rule on circadian rhythms orchestrated by blue light sensor CRY2 and clock component PRR9. Nat. Commun. 13: 5869.
He, Z., Zhao, X., Kong, F., Zuo, Z., and Liu, X. (2016). TCP2 positively regulates HY5/HYH and photomorphogenesis in Arabidopsis. J. Exp. Bot. 67: 775–785.
Hoecker, U. (2017). The activities of the E3 ubiquitin ligase COP1/SPA, a key repressor in light signaling. Curr. Opin. Plant Biol. 37: 63–69.
Hoecker, U., and Quail, P.H. (2001). The phytochrome A‐specific signaling intermediate SPA1 interacts directly with COP1, a constitutive repressor of light signaling in Arabidopsis. J. Biol. Chem. 276: 38173–38178.
Hoecker, U., Tepperman, J.M., and Quail, P.H. (1999). SPA1, a WD‐repeat protein specific to phytochrome A signal transduction. Science 284: 496–499.
Hoffman, P.D., Batschauer, A., and Hays, J.B. (1996). PHH1, a novel gene from Arabidopsis thaliana that encodes a protein similar to plant blue‐light photoreceptors and microbial photolyases. Mol. Gen. Genet. 253: 259–265.
Holm, M., Hardtke, C.S., Gaudet, R., and Deng, X.W. (2001). Identification of a structural motif that confers specific interaction with the WD40 repeat domain of Arabidopsis COP1. EMBO J. 20: 118–127.
Holtkotte, X., Ponnu, J., Ahmad, M., and Hoecker, U. (2017). The blue light‐induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling. PLoS Genet. 13: e1007044.
Hu, J., Hu, Y., Yang, M., Hu, X., and Wang, X. (2021). Light‐induced dynamic change of phytochrome B and cryptochrome 1 stabilizes SINATs in Arabidopsis. Front. Plant Sci. 12: 722733.
Hu, Y., Rosado, D., Lindb Ck, L.N., Micko, J., and Pedmale, U.V. (2023). Cryptochromes and UBP12/13 deubiquitinases antagonistically regulate DNA damage response in Arabidopsis. BioRxiv. https://doi.org/10.1101/2023.01.15.524001.
Huang, X., Ouyang, X., and Deng, X.W. (2014). Beyond repression of photomorphogenesis: Role switching of COP/DET/FUS in light signaling. Curr. Opin. Plant Biol. 21: 96–103.
Hughes, R.M., Vrana, J.D., Song, J., and Tucker, C.L. (2012). Light‐dependent, dark‐promoted interaction between Arabidopsis cryptochrome 1 and phytochrome B proteins. J. Biol. Chem. 287: 22165–22172.
Jarillo, J.A., Capel, J., Tang, R.‐H., Yang, H.‐Q., Alonso, J.M., Ecker, J.R., and Cashmore, A.R. (2001). An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature 410: 487–490.
Jiang, B., Zhong, Z., Gu, L., Zhang, X., Wei, J., Ye, C., Lin, G., Qu, G., Xiang, X., Wen, C., et al. (2023a). Light‐induced LLPS of the CRY2/SPA1/FIO1 complex regulating mRNA methylation and chlorophyll homestasis in Arabidopsis. Nat. Plants. In press.
Jiang, B., Zhong, Z., Su, J., Zhu, T., Yueh, T., Bragasin, J., Bu, V., Zhou, C., Lin, C., and Wang, X. (2023b). Co‐condensation with photoexcited cryptochromes facilitates MAC3A to positively control hypocotyl growth in Arabidopsis. Sci. Adv. 9: eadh4048.
Kami, C., Lorrain, S., Hornitschek, P., and Fankhauser, C. (2010). Light‐regulated plant growth and development. Curr. Top. Dev. Biol. 10: 29–66.
Kerner, K., Nagano, S., Lubbe, A., and Hoecker, U. (2021). Functional comparison of the WD‐repeat domains of SPA1 and COP1 in suppression of photomorphogenesis. Plant Cell Environ. 44: 3273–3282.
Kim, C., Kwon, Y., Jeong, J., Kang, M., Lee, G.S., Moon, J.H., Lee, H.J., Park, Y.I., and Choi, G. (2023). Phytochrome B photobodies are comprised of phytochrome B and its primary and secondary interacting proteins. Nat. Commun. 14: 1708.
Kircher, S., Gil, P., Kozma‐Bognar, L., Fejes, E., Speth, V., Husselstein‐Muller, T., Bauer, D., Adam, E., Schafer, E., and Nagy, F. (2002). Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell 14: 1541–1555.
Kleiner, O., Kircher, S., Harter, K., and Batschauer, A. (1999). Nuclear localization of the Arabidopsis blue light receptor cryptochrome 2. Plant J. 19: 289–296.
Lau, K., Podolec, R., Chappuis, R., Ulm, R., and Hothorn, M. (2019). Plant photoreceptors and their signaling components compete for COP1 binding via VP peptide motifs. EMBO J. 38: e102140.
Lau, O.S., and Deng, X.W. (2012). The photomorphogenic repressors COP1 and DET1: 20 years later. Trends Plant Sci. 17: 584–593.
Laubinger, S., Fittinghoff, K., and Hoecker, U. (2004). The SPA quartet: A family of WD‐repeat proteins with a central role in suppression of photomorphogenesis in Arabidopsis. Plant Cell 16: 2293–2306.
Li, J., and Hiltbrunner, A. (2021). Is the Pr form of phytochrome biologically active in the nucleus? Mol. Plant 14: 535–537.
Lian, H., Xu, P., He, S., Wu, J., Pan, J., Wang, W., Xu, F., Wang, S., Pan, J., Huang, J., et al. (2018). Photoexcited CRYPTOCHROME 1 interacts directly with G‐protein beta subunit AGB1 to regulate the DNA‐binding activity of HY5 and photomorphogenesis in Arabidopsis. Mol. Plant 11: 1248–1263.
Lian, H.L., He, S.B., Zhang, Y.C., Zhu, D.M., Zhang, J.Y., Jia, K.P., Sun, S.X., Li, L., and Yang, H.Q. (2011). Blue‐light‐dependent interaction of cryptochrome 1 with SPA1 defines a dynamic signaling mechanism. Genes Dev. 25: 1023–1028.
Lin, C., Robertson, D.E., Ahmad, M., Raibekas, A.A., Jorns, M.S., Dutton, P.L., and Cashmore, A.R. (1995). Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1. Science 269: 968–970.
Lin, C., and Shalitin, D. (2003). Cryptochrome structure and signal transduction. Annu. Rev. Plant Biol. 54: 469–496.
Lin, C., and Todo, T. (2005). The cryptochromes. Genome Biol. 6: 220.
Lin, C., Yang, H., Guo, H., Mockler, T., Chen, J., and Cashmore, A.R. (1998). Enhancement of blue‐light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc. Natl. Acad. Sci. U.S.A. 95: 2686–2690.
Liu, B., Zuo, Z., Liu, H., Liu, X., and Lin, C. (2011). Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Genes Dev. 25: 1029–1034.
Liu, H., Yu, X., Li, K., Klejnot, J., Yang, H., Lisiero, D., and Lin, C. (2008a). Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 322: 1535–1539.
Liu, L.J., Zhang, Y.C., Li, Q.H., Sang, Y., Mao, J., Lian, H.L., Wang, L., and Yang, H.Q. (2008b). COP1‐mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell 20: 292–306.
Liu, Q., Liu, W., Niu, Y., Wang, T., and Dong, J. (2023). Liquid‐liquid phase separation in plants: Advances and perspectives from model species to crops. Plant Commun. 4: 100663.
Liu, Q., Su, T., He, W., Ren, H., Liu, S., Chen, Y., Gao, L., Hu, X., Lu, H., Cao, S., et al. (2020). Photooligomerization determines photosensitivity and photoreactivity of plant cryptochromes. Mol. Plant 13: 398–413.
Liu, Q., Wang, Q., Deng, W., Wang, X., Piao, M., Cai, D., Li, Y., Barshop, W.D., Yu, X., Zhou, T., et al. (2017). Molecular basis for blue light‐dependent phosphorylation of Arabidopsis cryptochrome 2. Nat. Commun. 8: 15234.
Liu, S., Zhang, L., Gao, L., Chen, Z., Bie, Y., Zhao, Q., Zhang, S., Hu, X., Liu, Q., Wang, X., et al. (2022). Differential photoregulation of the nuclear and cytoplasmic CRY1 in Arabidopsis. New Phytol. 234: 1332–1346.
Liu, T., Du, L., Li, Q., Kang, J., Guo, Q., and Wang, S. (2021). AtCRY2 negatively regulates the functions of AtANN2 and AtANN3 in drought tolerance by affecting their subcellular localization and transmembrane Ca2+ flow. Front. Plant Sci. 12: 754567.
Liu, Y., Li, X., Li, K., Liu, H., and Lin, C. (2013). Multiple bHLH proteins form heterodimers to mediate CRY2‐dependent regulation of flowering‐time in Arabidopsis. PLoS Genet. 9: e1003861.
Liu, Y., Li, X., Ma, D., Chen, Z., Wang, J.W., and Liu, H. (2018). CIB1 and CO interact to mediate CRY2‐dependent regulation of flowering. EMBO Rep. 19: e45762.
Ma, D., Li, X., Guo, Y., Chu, J., Fang, S., Yan, C., Noel, J.P., and Liu, H. (2016). Cryptochrome 1 interacts with PIF4 to regulate high temperature‐mediated hypocotyl elongation in response to blue light. Proc. Natl. Acad. Sci. U.S.A. 113: 224–229.
Ma, L., Guan, Z., Wang, Q., Yan, X., Wang, J., Wang, Z., Cao, J., Zhang, D., Gong, X., and Yin, P. (2020a). Structural insights into the photoactivation of Arabidopsis CRY2. Nat. Plants 6: 1432–1438.
Ma, L., Jia, H., Shen, A.L., Ding, J., Wang, X., Wang, J., Wan, J., Yan, J., Zhang, D., Dong, X., et al. (2023). Two determinants influence CRY2 photobody formation and function. Plant Biotechnol. J. 21: 460–462.
Ma, L., Li, X., Zhao, Z., Hao, Y., Shang, R., Zeng, D., and Liu, H. (2021). Light‐response Bric‐A‐Brack/Tramtrack/Broad proteins mediate cryptochrome 2 degradation in response to low ambient temperature. Plant Cell 33: 3610–3620.
Ma, L., Wang, X., Guan, Z., Wang, L., Wang, Y., Zheng, L., Gong, Z., Shen, C., Wang, J., Zhang, D., et al. (2020b). Structural insights into BIC‐mediated inactivation of Arabidopsis cryptochrome 2. Nat. Struct. Mol. Biol. 27: 472–479.
Malhotra, K., Kim, S.T., Batschauer, A., Dawut, L., and Sancar, A. (1995). Putative blue‐light photoreceptors from Arabidopsis thaliana and Sinapis alba with a high degree of sequence homology to DNA photolyase contain the two photolyase cofactors but lack DNA repair activity. Biochemistry 34: 6892–6899.
Mao, Z., He, S., Xu, F., Wei, X., Jiang, L., Liu, Y., Wang, W., Li, T., Xu, P., Du, S., et al. (2020). Photoexcited CRY1 and phyB interact directly with ARF6 and ARF8 to regulate their DNA‐binding activity and auxin‐induced hypocotyl elongation in Arabidopsis. New Phytol. 225: 848–865.
Mao, Z., Wei, X., Li, L., Xu, P., Zhang, J., Wang, W., Guo, T., Kou, S., Wang, W., Miao, L., et al. (2021). Arabidopsis cryptochrome 1 controls photomorphogenesis through regulation of H2A.Z deposition. Plant Cell 33: 1961–1979.
Más, P., Devlin, P.F., Panda, S., and Kay, S.A. (2000). Functional interaction of phytochrome B and cryptochrome 2. Nature 408: 207–211.
Miao, L., Zhao, J., Yang, G., Xu, P., Cao, X., Du, S., Xu, F., Jiang, L., Zhang, S., Wei, X., et al. (2021). Arabidopsis cryptochrome 1 undergoes COP1 and LRBs‐dependent degradation in response to high blue light. New Phytol. 234: 1347–1362.
Mo, W., Zhang, J., Zhang, L., Yang, Z., Yang, L., Yao, N., Xiao, Y., Li, T., Li, Y., Zhang, G., et al. (2022). Arabidopsis cryptochrome 2 forms photobodies with TCP22 under blue light and regulates the circadian clock. Nat. Commun. 13: 2631.
Murase, K., Hirano, Y., Sun, T.P., and Hakoshima, T. (2008). Gibberellin‐induced DELLA recognition by the gibberellin receptor GID1. Nature 456: 459–463.
Nolan, T.M., Vukasinovic, N., Liu, D., Russinova, E., and Yin, Y. (2020). Brassinosteroids: Multidimensional regulators of plant growth, development, and stress responses. Plant Cell 32: 295–318.
Norén Lindbäck, L., Ji, Y., Cervela‐Cardona, L., Jin, X., Pedmale, U.V., and Strand, Å. (2023). An interplay between bZIP16, bZIP68, and GBF1 regulates nuclear photosynthetic genes during photomorphogenesis in Arabidopsis. New Phytol. 240: 1082–1096.
Osterlund, M.T., Hardtke, C.S., Wei, N., and Deng, X.W. (2000). Targeted destabilization of HY5 during light‐regulated development of Arabidopsis. Nature 405: 462–466.
Pacín, M., Legris, M., and Casal, J.J. (2013). COP1 re‐accumulates in the nucleus under shade. Plant J. 75: 631–641.
Palayam, M., Ganapathy, J., Guercio, A.M., Tal, L., Deck, S.L., and Shabek, N. (2021). Structural insights into photoactivation of plant Cryptochrome‐2. Commun. Biol. 4: 28.
Pardi, S.A., and Nusinow, D.A. (2021). Out of the dark and into the light: A new view of phytochrome photobodies. Front. Plant Sci. 12: 732947.
Partch, C.L., and Sancar, A. (2005). Photochemistry and photobiology of cryptochrome blue‐light photopigments: The search for a photocycle. Photochem. Photobiol. 81: 1291–1304.
Pedmale, U.V., Huang, S.C., Zander, M., Cole, B.J., Hetzel, J., Ljung, K., Reis, P.A.B., Sridevi, P., Nito, K., Nery, J.R., et al. (2016). Cryptochromes interact directly with PIFs to control plant growth in limiting blue light. Cell 164: 233–245.
Podolec, R., Demarsy, E., and Ulm, R. (2021). Perception and signaling of Ultraviolet‐B radiation in plants. Annu. Rev. Plant Biol. 72: 793–822.
Podolec, R., and Ulm, R. (2018). Photoreceptor‐mediated regulation of the COP1/SPA E3 ubiquitin ligase. Curr. Opin. Plant Biol. 45: 18–25.
Ponnu, J., and Hoecker, U. (2022). Signaling mechanisms by Arabidopsis cryptochromes. Front. Plant Sci. 13: 844714.
Ponnu, J., Riedel, T., Penner, E., Schrader, A., and Hoecker, U. (2019). Cryptochrome 2 competes with COP1 substrates to repress COP1 ubiquitin ligase activity during Arabidopsis photomorphogenesis. Proc. Natl. Acad. Sci. U.S.A. 116: 27133–27141.
Quail, P.H. (2010). Phytochromes. Curr. Biol. 20: 504–507.
Rosenfeldt, G., Viana, R.M., Mootz, H.D., von Arnim, A.G., and Batschauer, A. (2008). Chemically induced and light‐independent cryptochrome photoreceptor activation. Mol. Plant 1: 4–14.
Saijo, Y., Sullivan, J.A., Wang, H., Yang, J., Shen, Y., Rubio, V., Ma, L., Hoecker, U., and Deng, X.W. (2003). The COP1‐SPA1 interaction defines a critical step in phytochrome A‐mediated regulation of HY5 activity. Genes Dev. 17: 2642–2647.
Saijo, Y., Zhu, D., Li, J., Rubio, V., Zhou, Z., Shen, Y., Hoecker, U., Wang, H., and Deng, X.W. (2008). Arabidopsis COP1/SPA1 complex and FHY1/FHY3 associate with distinct phosphorylated forms of phytochrome A in balancing light signaling. Mol. Cell 31: 607–613.
Sang, Y., Li, Q.H., Rubio, V., Zhang, Y.C., Mao, J., Deng, X.W., and Yang, H.Q. (2005). N‐terminal domain‐mediated homodimerization is required for photoreceptor activity of Arabidopsis CRYPTOCHROME 1. Plant Cell 17: 1569–1584.
Seo, H.S., Yang, J.Y., Ishikawa, M., Bolle, C., Ballesteros, M.L., and Chua, N.H. (2003). LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature 423: 995–999.
Shalitin, D., Yang, H., Mockler, T.C., Maymon, M., Guo, H., Whitelam, G.C., and Lin, C. (2002). Regulation of Arabidopsis cryptochrome 2 by blue‐light‐dependent phosphorylation. Nature 417: 763–767.
Shalitin, D., Yu, X., Maymon, M., Mockler, T., and Lin, C. (2003). Blue light‐dependent in vivo and in vitro phosphorylation of Arabidopsis cryptochrome 1. Plant Cell 15: 2421–2429.
Shao, K., Zhang, X., Li, X., Hao, Y., Huang, X., Ma, M., Zhang, M., Yu, F., Liu, H., and Zhang, P. (2020). The oligomeric structures of plant cryptochromes. Nat. Struct. Mol. Biol. 27: 480–488.
Shen, L., Liang, Z., Wong, C.E., and Yu, H. (2019). Messenger RNA modifications in plants. Trends Plant Sci. 24: 328–341.
Strayer, C., Oyama, T., Schultz, T.F., Raman, R., Somers, D.E., Más, P., Panda, S., Kreps, J.A., and Kay, S.A. (2000). Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289: 768–771.
Tang, J., Chen, S., and Jia, G. (2023). Detection, regulation, and functions of RNA N(6)‐methyladenosine modification in plants. Plant Commun. 4: 100546.
Uljon, S., Xu, X., Durzynska, I., Stein, S., Adelmant, G., Marto, J.A., Pear, W.S., and Blacklow, S.C. (2016). Structural basis for substrate selectivity of the E3 ligase COP1. Structure 24: 687–696.
von Arnim, A.G., and Deng, X.W. (1994). Light inactivation of Arabidopsis photomorphogenic repressor COP1 involves a cell‐specific regulation of its nucleocytoplasmic partitioning. Cell 79: 1035–1045.
Wang, H., Ma, L.G., Li, J.M., Zhao, H.Y., and Deng, X.W. (2001). Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 294: 154–158.
Wang, Q., and Lin, C. (2020). Mechanisms of cryptochrome‐mediated photoresponses in plants. Annu. Rev. Plant Biol. 71: 103–129.
Wang, Q., Zuo, Z., Wang, X., Gu, L., Yoshizumi, T., Yang, Z., Yang, L., Liu, Q., Liu, W., Han, Y.J., et al. (2016). Photoactivation and inactivation of Arabidopsis cryptochrome 2. Science 354: 343–347.
Wang, S., Li, L., Xu, P., Lian, H., Wang, W., Xu, F., Mao, Z., Zhang, T., and Yang, H. (2018a). CRY1 interacts directly with HBI1 to regulate its transcriptional activity and photomorphogenesis in Arabidopsis. J. Exp. Bot. 69: 3867–3881.
Wang, W., Gao, L., Zhao, T., Chen, J., Chen, T., and Lin, W. (2023). Arabidopsis NF–YC7 interacts with CRY2 and PIF4/5 to repress blue light‐inhibited hypocotyl elongation. Int. J. Mol. Sci. 24: 12444.
Wang, W., Lu, X., Li, L., Lian, H., Mao, Z., Xu, P., Guo, T., Xu, F., Du, S., Cao, X., et al. (2018b). Photoexcited CRYPTOCHROME1 interacts with dephosphorylated BES1 to regulate brassinosteroid signaling and photomorphogenesis in Arabidopsis. Plant Cell 30: 1989–2005.
Wang, X., Jiang, B., Gu, L., Chen, Y., Mora, M., Zhu, M., Noory, E., Wang, Q., and Lin, C. (2021). A photoregulatory mechanism of the circadian clock in Arabidopsis. Nat. Plants 7: 1397–1408.
Wang, X., Wang, Q., Han, Y.J., Liu, Q., Gu, L., Yang, Z., Su, J., Liu, B., Zuo, Z., He, W., et al. (2017). A CRY‐BIC negative‐feedback circuitry regulating blue light sensitivity of Arabidopsis. Plant J. 92: 426–436.
Wright, P.E., and Dyson, H.J. (2015). Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 16: 18–29.
Wu, G., and Spalding, E.P. (2007). Separate functions for nuclear and cytoplasmic cryptochrome 1 during photomorphogenesis of Arabidopsis seedlings. Proc. Natl. Acad. Sci. U.S.A. 104: 18813–18818.
Xu, F., He, S., Zhang, J., Mao, Z., Wang, W., Li, T., Hua, J., Du, S., Xu, P., Li, L., et al. (2018). Photoactivated CRY1 and phyB interact directly with AUX/IAA proteins to inhibit auxin signaling in Arabidopsis. Mol. Plant 11: 523–541.
Xu, P., Chen, H., Li, T., Xu, F., Mao, Z., Cao, X., Miao, L., Du, S., Hua, J., Zhao, J., et al. (2021a). Blue light‐dependent interactions of CRY1 with GID1 and DELLA proteins regulate gibberellin signaling and photomorphogenesis in Arabidopsis. Plant Cell 33: 2375–2394.
Xu, X., Zheng, C., Lu, D., Song, C.P., and Zhang, L. (2021b). Phase separation in plants: New insights into cellular compartmentalization. J. Integr. Plant Biol. 63: 1835–1855.
Yamaguchi, R., Nakamura, M., Mochizuki, N., Kay, S.A., and Nagatani, A. (1999). Light‐dependent translocation of a phytochrome B‐GFP fusion protein to the nucleus in transgenic Arabidopsis. J. Cell Biol. 145: 437–445.
Yan, B., Yang, Z., He, G., Jing, Y., Dong, H., Ju, L., Zhang, Y., Zhu, Y., Zhou, Y., and Sun, J. (2021). The blue light receptor CRY1 interacts with GID1 and DELLA proteins to repress gibberellin signaling and plant growth. Plant Commun. 2: 100245.
Yang, H.Q., Tang, R.H., and Cashmore, A.R. (2001). The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1. Plant Cell 13: 2573–2587.
Yang, H.Q., Wu, Y.J., Tang, R.H., Liu, D., Liu, Y., and Cashmore, A.R. (2000). The C termini of Arabidopsis cryptochromes mediate a constitutive light response. Cell 103: 815–827.
Yang, J., Lin, R., Sullivan, J., Hoecker, U., Liu, B., Xu, L., Deng, X.W., and Wang, H. (2005). Light regulates COP1‐mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis. Plant Cell 17: 804–821.
Yang, J., Li, L., Li, X., Zhong, M., Li, X., Qu, L., Zhang, H., Tang, D., Liu, X., He, C., et al. (2023). The blue light receptor CRY1 interacts with FIP37 to promote N6 ‐methyladenosine RNA modification and photomorphogenesis in Arabidopsis. New Phytol. 237: 840–854.
Yang, Y.J., Zuo, Z.C., Zhao, X.Y., Li, X., Klejnot, J., Li, Y., Chen, P., Liang, S.P., Yu, X.H., Liu, X.M., et al. (2008). Blue‐light‐independent activity of Arabidopsis cryptochromes in the regulation of steady‐state levels of protein and mrna expression. Mol. Plant 1: 167–177.
Yu, X., Klejnot, J., Zhao, X., Shalitin, D., Maymon, M., Yang, H., Lee, J., Liu, X., Lopez, J., and Lin, C. (2007a). Arabidopsis cryptochrome 2 completes its posttranslational life cycle in the nucleus. Plant Cell 19: 3146–3156.
Yu, X., Liu, H., Klejnot, J., and Lin, C. (2010). The cryptochrome blue light receptors. Arabidopsis Book 8: e0135.
Yu, X., Sayegh, R., Maymon, M., Warpeha, K., Klejnot, J., Yang, H., Huang, J., Lee, J., Kaufman, L., and Lin, C. (2009). Formation of nuclear bodies of Arabidopsis CRY2 in response to blue light is associated with its blue light‐dependent degradation. Plant Cell 21: 118–130.
Yu, X., Shalitin, D., Liu, X., Maymon, M., Klejnot, J., Yang, H., Lopez, J., Zhao, X., Bendehakkalu, K.T., and Lin, C. (2007b). Derepression of the NC80 motif is critical for the photoactivation of Arabidopsis CRY2. Proc. Natl. Acad. Sci. U.S.A. 104: 7289–7294.
Yu, Z., Zhang, F., Friml, J., and Ding, Z. (2022). Auxin signaling: Research advances over the past 30 years. J. Integr. Plant Biol. 64: 371–392.
Zhai, Q., Zhang, X., Wu, F., Feng, H., Deng, L., Xu, L., Zhang, M., Wang, Q., and Li, C. (2015). Transcriptional mechanism of jasmonate receptor COI1‐mediated delay of flowering time in Arabidopsis. Plant Cell 27: 2814–2828.
Zhang, B., Wang, L., Zeng, L., Zhang, C., and Ma, H. (2015). Arabidopsis TOE proteins convey a photoperiodic signal to antagonize CONSTANS and regulate flowering time. Genes Dev. 29: 975–987.
Zhao, B.S., Roundtree, I.A., and He, C. (2017). Post‐transcriptional gene regulation by mRNA modifications. Nat. Rev. Mol. Cell Biol. 18: 31–42.
Zhao, Z., Dent, C., Liang, H., Lv, J., Shang, G., Liu, Y., Feng, F., Wang, F., Pang, J., Li, X., et al. (2022). CRY2 interacts with CIS1 to regulate thermosensory flowering via FLM alternative splicing. Nat. Commun. 13: 7045.
Zhong, M., Zeng, B., Tang, D., Yang, J., Qu, L., Yan, J., Wang, X., Li, X., Liu, X., and Zhao, X. (2021). The blue light receptor CRY1 interacts with GID1 and DELLA proteins to repress GA signaling during photomorphogenesis in Arabidopsis. Mol. Plant 14: 1328–1342.
Zhou, Y., Xun, Q., Zhang, D., Lv, M., Ou, Y., and Li, J. (2019). TCP transcription factors associate with PHYTOCHROME INTERACTING FACTOR 4 and CRYPTOCHROME 1 to regulate thermomorphogenesis in Arabidopsis thaliana. iScience 15: 600–610.
Zhu, D., Maier, A., Lee, J.H., Laubinger, S., Saijo, Y., Wang, H., Qu, L.J., Hoecker, U., and Deng, X.W. (2008). Biochemical characterization of Arabidopsis complexes containing CONSTITUTIVELY PHOTOMORPHOGENIC1 and SUPPRESSOR OF PHYA proteins in light control of plant development. Plant Cell 20: 2307–2323.
Zoltowski, B.D., and Imaizumi, T. (2014). Structure and function of the ZTL/FKF1/LKP2 group proteins in Arabidopsis. Enzymes 35: 213–239.
Zuo, Z., Liu, H., Liu, B., Liu, X., and Lin, C. (2011). Blue light‐dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis. Curr. Biol. 21: 841–847.
Zuo, Z.C., Meng, Y.Y., Yu, X.H., Zhang, Z.L., Feng, D.S., Sun, S.F., Liu, B., and Lin, C.T. (2012). A study of the blue‐light‐dependent phosphorylation, degradation, and photobody formation of Arabidopsis CRY2. Mol. Plant 5: 726–733. - Grant Information: 32000155 National Natural Science Foundation of China; 32330009 National Natural Science Foundation of China
- Contributed Indexing: Keywords: Arabidopsis; CRY1; CRY2; blue light; cryptochrome; phase separation
- Accession Number: 0 (Cryptochromes)
0 (Arabidopsis Proteins) - Publication Date: Date Created: 20231030 Date Completed: 20240527 Latest Revision: 20240531
- Publication Date: 20240531
- Accession Number: 10.1111/jipb.13578
- Accession Number: 37902426
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.