As a matter of fat: Emerging roles of lipid-sensitive E3 ubiquitin ligases.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Gawden-Bone CM;Gawden-Bone CM; Lehner PJ; Lehner PJ; Volkmar N; Volkmar N
  • Source:
    BioEssays : news and reviews in molecular, cellular and developmental biology [Bioessays] 2023 Dec; Vol. 45 (12), pp. e2300139. Date of Electronic Publication: 2023 Oct 27.
  • Publication Type:
    Journal Article; Research Support, Non-U.S. Gov't
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Wiley Country of Publication: United States NLM ID: 8510851 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-1878 (Electronic) Linking ISSN: 02659247 NLM ISO Abbreviation: Bioessays Subsets: MEDLINE
    • Publication Information:
      Publication: <2005->: Hoboken, N.J. : Wiley
      Original Publication: Cambridge, UK : Published for the ICSU Press by Cambridge University Press, c1984-
    • Subject Terms:
    • Abstract:
      The dynamic structure and composition of lipid membranes need to be tightly regulated to control the vast array of cellular processes from cell and organelle morphology to protein-protein interactions and signal transduction pathways. To maintain membrane integrity, sense-and-response systems monitor and adjust membrane lipid composition to the ever-changing cellular environment, but only a relatively small number of control systems have been described. Here, we explore the emerging role of the ubiquitin-proteasome system in monitoring and maintaining membrane lipid composition. We focus on the ER-resident RNF145 E3 ubiquitin ligase, its role in regulating adiponectin receptor 2 (ADIPOR2), its lipid hydrolase substrate, and the broader implications for understanding the homeostatic processes that fine-tune cellular membrane composition.
      (© 2023 Wiley Periodicals LLC.)
    • References:
      Nicolson, G. (2013). Update of the 1972 Singer-Nicolson fluid-mosaic model of membrane structure. Discoveries, 1(1), 1-14. https://doi.org/10.15190/d.2013.3.
      Ernst, R., Ejsing, C. S., & Antonny, B. (2016). Homeoviscous adaptation and the regulation of membrane lipids. Journal of Molecular Biology, 428(24), 4776-4791. https://doi.org/10.1016/j.jmb.2016.08.013.
      Carta, G., Murru, E., Banni, S., & Manca, C. (2017). Palmitic acid: Physiological role, metabolism and nutritional implications. Frontiers in Physiology, 8, 1-14. https://doi.org/10.3389/fphys.2017.00902.
      Ernst, R., Ballweg, S., & Levental, I. (2018). Cellular mechanisms of physicochemical membrane homeostasis. Current Opinion in Cell Biology, 53, 44-51. https://doi.org/10.1016/j.ceb.2018.04.013.
      Pilon, M. (2021). Paradigm shift: The primary function of the “Adiponectin Receptors” is to regulate cell membrane composition. Lipids in Health and Disease, 20(1), 43. https://doi.org/10.1186/s12944-021-01468-y.
      Guo, Y., Cordes, K. R., Farese, R. V, & Walther, T. C. (2009). Lipid droplets at a glance. Journal of Cell Science, 122(6), 749-752. https://doi.org/10.1242/jcs.037630.
      Rodrigues, K. F., Yong, W. T. L., Bhuiyan, M. S. A., Siddiquee, S., Shah, M. D., & Venmathi Maran, B. A. (2022). Current understanding on the genetic basis of key metabolic disorders: A review. Biology, 11(9), 1308. https://doi.org/10.3390/biology11091308.
      Prendeville, H., & Lynch, L. (2022). Diet, lipids, and antitumor immunity. Cellular & Molecular Immunology, 19(3), 432-444. https://doi.org/10.1038/s41423-021-00781-x.
      van den Boomen, D. J. H., Volkmar, N., & Lehner, P. J. (2020). Ubiquitin-mediated regulation of sterol homeostasis. Current Opinion in Cell Biology, 65(Ldl), 103-111. https://doi.org/10.1016/j.ceb.2020.04.010.
      Köberlin, M. S., Snijder, B., Heinz, L. X., Baumann, C. L., Fauster, A., Vladimer, G. I., Gavin, A.-C., & Superti-Furga, G. (2015). A conserved circular network of coregulated lipids modulates innate immune responses. Cell, 162(1), 170-183. https://doi.org/10.1016/j.cell.2015.05.051.
      Pilon, M. (2016). Revisiting the membrane-centric view of diabetes. Lipids in Health and Disease, 15(1), 167. https://doi.org/10.1186/s12944-016-0342-0.
      Fernández, L. P., Gómez de Cedrón, M., & Ramírez de Molina, A. (2020). Alterations of lipid metabolism in cancer: Implications in prognosis and treatment. Frontiers in Oncology, 10(October). https://doi.org/10.3389/fonc.2020.577420.
      Sharpe, L. J., Coates, H. W., & Brown, A. J. (2020). Post-translational control of the long and winding road to cholesterol. Journal of Biological Chemistry, 295(51), 17549-17559. https://doi.org/10.1074/jbc.REV120.010723.
      Levental, I., & Lyman, E. (2023). Regulation of membrane protein structure and function by their lipid nano-environment. Nature Reviews Molecular Cell Biology, 24(2), 107-122. https://doi.org/10.1038/s41580-022-00524-4.
      Sharpe, L. J., Cook, E. C. L., Zelcer, N., & Brown, A. J. (2014). The UPS and downs of cholesterol homeostasis. Trends in Biochemical Sciences, 39(11), 527-535. https://doi.org/10.1016/j.tibs.2014.08.008.
      Sharpe, L. J., & Brown, A. J. (2013). Controlling Cholesterol Synthesis beyond 3-Hydroxy-3-methylglutaryl-CoA Reductase (HMGCR). Journal of Biological Chemistry, 288(26), 18707-18715. https://doi.org/10.1074/jbc.R113.479808.
      Pollaci, G., Gorla, G., Potenza, A., Carrozzini, T., Canavero, I., Bersano, A., & Gatti, L. (2022). Novel multifaceted roles for RNF213 protein. International Journal of Molecular Sciences, 23(9), 4492. https://doi.org/10.3390/ijms23094492.
      Scott, N. A., Sharpe, L. J., & Brown, A. J. (2021). The E3 ubiquitin ligase MARCHF6 as a metabolic integrator in cholesterol synthesis and beyond. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1866(1), 158837. https://doi.org/10.1016/j.bbalip.2020.158837.
      Lee, J. M., Hammarén, H. M., Savitski, M. M., & Baek, S. H. (2023). Control of protein stability by post-translational modifications. Nature Communications, 14(1), 201. https://doi.org/10.1038/s41467-023-35795-8.
      Yang, Q., Zhao, J., Chen, D., & Wang, Y. (2021). E3 ubiquitin ligases: Styles, structures and functions. Molecular Biomedicine, 2(1), 23. https://doi.org/10.1186/s43556-021-00043-2.
      Morreale, F. E., & Walden, H. (2016). Types of Ubiquitin Ligases. Cell, 165(1), 248-248.e1. https://doi.org/10.1016/j.cell.2016.03.003.
      Deshaies, R. J., & Joazeiro, C. A. P. (2009). RING domain E3 ubiquitin ligases. Annual Review of Biochemistry, 78(1), 399-434. https://doi.org/10.1146/annurev.biochem.78.101807.093809.
      Pickart, C. M., & Eddins, M. J. (2004). Ubiquitin: Structures, functions, mechanisms. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1695(1-3), 55-72. https://doi.org/10.1016/j.bbamcr.2004.09.019.
      Berndsen, C. E., & Wolberger, C. (2014). New insights into ubiquitin E3 ligase mechanism. Nature Structural & Molecular Biology, 21(4), 301-307. https://doi.org/10.1038/nsmb.2780.
      Asselman, C., Hemelsoet, D., Eggermont, D., Dermaut, B., & Impens, F. (2022). Moyamoya disease emerging as an immune-related angiopathy. Trends in Molecular Medicine, 28(11), 939-950. https://doi.org/10.1016/j.molmed.2022.08.009.
      Otten, E. G., Werner, E., Crespillo-Casado, A., Boyle, K. B., Dharamdasani, V., Pathe, C., Santhanam, B., & Randow, F. (2021). Ubiquitylation of lipopolysaccharide by RNF213 during bacterial infection. Nature, 594(7861), 111-116. https://doi.org/10.1038/s41586-021-03566-4.
      Sugihara, M., Morito, D., Ainuki, S., Hirano, Y., Ogino, K., Kitamura, A., Hirata, H., & Nagata, K. (2019). The AAA+ ATPase/ubiquitin ligase mysterin stabilizes cytoplasmic lipid droplets. Journal of Cell Biology, 218(3), 949-960. https://doi.org/10.1083/jcb.201712120.
      Grabner, G. F., Xie, H., Schweiger, M., & Zechner, R. (2021). Lipolysis: Cellular mechanisms for lipid mobilization from fat stores. Nature Metabolism, 3(11), 1445-1465. https://doi.org/10.1038/s42255-021-00493-6.
      Piccolis, M., Bond, L. M., Kampmann, M., Pulimeno, P., Chitraju, C., Jayson, C. B. K., Vaites, L. P., Boland, S., Lai, Z. W., Gabriel, K. R., Elliott, S. D., Paulo, J. A., Harper, J. W., Weissman, J. S., Walther, T. C., & Farese, R. V. (2019). Probing the global cellular responses to lipotoxicity caused by saturated fatty acids. Molecular Cell, 74(1), 32-44.e8.e8. https://doi.org/10.1016/j.molcel.2019.01.036.
      Zhang, K., & Kaufman, R. J. (2008). From endoplasmic-reticulum stress to the inflammatory response. Nature, 454(7203), 455-462. https://doi.org/10.1038/nature07203.
      Urano, F., Wang, X., Bertolotti, A., Zhang, Y., Chung, P., Harding, H. P., & Ron, D. (2000). Coupling of Stress in the ER to Activation of JNK Protein Kinases by Transmembrane Protein Kinase IRE1. Science, 287(5453), 664-666. https://doi.org/10.1126/science.287.5453.664.
      Brenner, D., Blaser, H., & Mak, T. W. (2015). Regulation of tumour necrosis factor signalling: Live or let die. Nature Reviews Immunology, 15(6), 362-374. https://doi.org/10.1038/nri3834.
      Ceccarelli, A., Di Venere, A., Nicolai, E., De Luca, A., Rosato, N., Gratton, E., Mei, G., & Caccuri, A. M. (2017). New insight into the interaction of TRAF2 C-terminal domain with lipid raft microdomains. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1862(9), 813-822. https://doi.org/10.1016/j.bbalip.2017.05.003.
      Doan, J. E. S., Windmiller, D. A., & Riches, D. W. H. (2004). Differential regulation of TNF-R1 signaling: Lipid raft dependency of p42mapk/erk2 activation, but not NF-κB activation. The Journal of Immunology, 172(12), 7654-7660. https://doi.org/10.4049/jimmunol.172.12.7654.
      Hong, C., Duit, S., Jalonen, P., Out, R., Scheer, L., Sorrentino, V., Boyadjian, R., Rodenburg, K. W., Foley, E., Korhonen, L., Lindholm, D., Nimpf, J., van Berkel, T. J. C., Tontonoz, P., & Zelcer, N. (2010). The E3 ubiquitin ligase IDOL induces the degradation of the low density lipoprotein receptor family members VLDLR and ApoER2. Journal of Biological Chemistry, 285(26), 19720-19726. https://doi.org/10.1074/jbc.M110.123729.
      Zelcer, N., Hong, C., Boyadjian, R., & Tontonoz, P. (2009). LXR regulates cholesterol uptake through idol-dependent ubiquitination of the LDL receptor. Science, 325(5936), 100-104. https://doi.org/10.1126/science.1168974.
      Zhang, L., Fairall, L., Goult, B. T., Calkin, A. C., Hong, C., Millard, C. J., Tontonoz, P., & Schwabe, J. W. R. (2011). The IDOL-UBE2D complex mediates sterol-dependent degradation of the LDL receptor. Genes & Development, 25(12), 1262-1274. https://doi.org/10.1101/gad.2056211.
      Sorrentino, V., Scheer, L., Santos, A., Reits, E., Bleijlevens, B., & Zelcer, N. (2011). Distinct functional domains contribute to degradation of the Low Density Lipoprotein Receptor (LDLR) by the E3 Ubiquitin ligase inducible degrader of the LDLR (IDOL). Journal of Biological Chemistry, 286(34), 30190-30199. https://doi.org/10.1074/jbc.M111.249557.
      Wang, B., & Tontonoz, P. (2018). Liver X receptors in lipid signalling and membrane homeostasis. Nature Reviews Endocrinology, 14(8), 452-463. https://doi.org/10.1038/s41574-018-0037-x.
      Hong, C., Marshall, S. M., McDaniel, A. L., Graham, M., Layne, J. D., Cai, L., Scotti, E., Boyadjian, R., Kim, J., Chamberlain, B. T., Tangirala, R. K., Jung, M. E., Fong, L., Lee, R., Young, S. G., Temel, R. E., & Tontonoz, P. (2014). The LXR-idol axis differentially regulates plasma LDL Levels in primates and mice. Cell Metabolism, 20(5), 910-918. https://doi.org/10.1016/j.cmet.2014.10.001.
      Choi, J., Gao, J., Kim, J., Hong, C., Kim, J., & Tontonoz, P. (2015). The E3 ubiquitin ligase Idol controls brain LDL receptor expression, ApoE clearance, and Aβ amyloidosis. Science Translational Medicine, 7(314). https://doi.org/10.1126/scitranslmed.aad1904.
      Scotti, E., Calamai, M., Goulbourne, C. N., Zhang, L., Hong, C., Lin, R. R., Choi, J., Pilch, P. F., Fong, L. G., Zou, P., Ting, A. Y., Pavone, F. S., Young, S. G., & Tontonoz, P. (2013). IDOL stimulates clathrin-independent endocytosis and multivesicular body-mediated lysosomal degradation of the low-density lipoprotein receptor. Molecular and Cellular Biology, 33(8), 1503-1514. https://doi.org/10.1128/MCB.01716-12.
      Zhang, L., Reue, K., Fong, L. G., Young, S. G., & Tontonoz, P. (2012). Feedback regulation of cholesterol uptake by the LXR-IDOL-LDLR Axis. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(11), 2541-2546. https://doi.org/10.1161/ATVBAHA.112.250571.
      Calkin, A. C., Goult, B. T., Zhang, L., Fairall, L., Hong, C., Schwabe, J. W. R., & Tontonoz, P. (2011). FERM-dependent E3 ligase recognition is a conserved mechanism for targeted degradation of lipoprotein receptors. Proceedings of the National Academy of Sciences, 108(50), 20107-20112. https://doi.org/10.1073/pnas.1111589108.
      Martinelli, L., Adamopoulos, A., Johansson, P., Wan, P. T., Gunnarsson, J., Guo, H., Boyd, H., Zelcer, N., & Sixma, T. K. (2020). Structural analysis of the LDL receptor-interacting FERM domain in the E3 ubiquitin ligase IDOL reveals an obscured substrate-binding site. Journal of Biological Chemistry, 295(39), 13570-13583. https://doi.org/10.1074/jbc.RA120.014349.
      Sorrentino, V., Nelson, J. K., Maspero, E., Marques, A. R. A., Scheer, L., Polo, S., & Zelcer, N. (2013). The LXR-IDOL axis defines a clathrin-, caveolae-, and dynamin-independent endocytic route for LDLR internalization and lysosomal degradation. Journal of Lipid Research, 54(8), 2174-2184. https://doi.org/10.1194/jlr.M037713.
      Scott, J. L., Frick, C. T., Johnson, K. A., Liu, H., Yong, S. S., Varney, A. G., Wiest, O., & Stahelin, R. V. (2020). Molecular analysis of membrane targeting by the C2 domain of the E3 ubiquitin ligase Smurf1. Biomolecules, 10(2), 229. https://doi.org/10.3390/biom10020229.
      Boase, N. A., & Kumar, S. (2015). NEDD4: The founding member of a family of ubiquitin-protein ligases. Gene, 557(2), 113-122. https://doi.org/10.1016/j.gene.2014.12.020.
      Xia, Q., Li, Y., Han, D., & Dong, L. (2021). SMURF1, a promoter of tumor cell progression? Cancer Gene Therapy, 28(6), 551-565. https://doi.org/10.1038/s41417-020-00255-8.
      Fu, L., Cui, C.-P., Zhang, X., & Zhang, L. (2020). The functions and regulation of Smurfs in cancers. Seminars in Cancer Biology, 67(Pt 2), 102-116. https://doi.org/10.1016/j.semcancer.2019.12.023.
      Rizo, J., & Südhof, T. C. (1998). C2-domains, structure and function of a universal Ca2+-binding domain. Journal of Biological Chemistry, 273(26), 15879-15882. https://doi.org/10.1074/jbc.273.26.15879.
      Lu, K., Li, P., Zhang, M., Xing, G., Li, X., Zhou, W., Bartlam, M., Zhang, L., Rao, Z., & He, F. (2011). Pivotal role of the C2 domain of the smurf1 ubiquitin ligase in substrate selection. Journal of Biological Chemistry, 286(19), 16861-16870. https://doi.org/10.1074/jbc.M110.211979.
      Tanahashi, R., Afiah, T. S. N., Nishimura, A., Watanabe, D., & Takagi, H. (2020). The C2 domain of the ubiquitin ligase Rsp5 is required for ubiquitination of the endocytic protein Rvs167 upon change of nitrogen source. FEMS Yeast Research, 20(7), 1-9. https://doi.org/10.1093/femsyr/foaa058.
      Dunn, R., Klos, D. A., Adler, A. S., & Hicke, L. (2004). The C2 domain of the Rsp5 ubiquitin ligase binds membrane phosphoinositides and directs ubiquitination of endosomal cargo. The Journal of Cell Biology, 165(1), 135-144. https://doi.org/10.1083/jcb.200309026.
      Shcherbik, N., Zoladek, T., Nickels, J. T., & Haines, D. S. (2003). Rsp5p is required for ER bound Mga2p120 polyubiquitination and release of the processed/tethered transactivator Mga2p90. Current Biology, 13(14), 1227-1233. https://doi.org/10.1016/S0960-9822(03)00457-3.
      Covino, R., Hummer, G., & Ernst, R. (2018). Integrated functions of membrane property sensors and a hidden side of the unfolded protein response. Molecular Cell, 71(3), 458-467. https://doi.org/10.1016/j.molcel.2018.07.019.
      Ballweg, S., Sezgin, E., Doktorova, M., Covino, R., Reinhard, J., Wunnicke, D., Hänelt, I., Levental, I., Hummer, G., & Ernst, R. (2020). Regulation of lipid saturation without sensing membrane fluidity. Nature Communications, 11(1), 756. https://doi.org/10.1038/s41467-020-14528-1.
      Ballweg, S., & Ernst, R. (2017). Control of membrane fluidity: The OLE pathway in focus. In Biological Chemistry, 398(2), 215-228. https://doi.org/10.1515/hsz-2016-0277.
      Merklinger, L., Bauer, J., Pedersen, P. A., Damgaard, R. B., & Morth, J. P. (2022). Phospholipids alter activity and stability of mitochondrial membrane-bound ubiquitin ligase MARCH5. Life Science Alliance, 5(8), e202101309. https://doi.org/10.26508/lsa.202101309.
      Garcia Fernandez, M., Troiano, L., Moretti, L., Nasi, M., Pinti, M., Salvioli, S., Dobrucki, J., & Cossarizza, A. (2002). Early changes in intramitochondrial cardiolipin distribution during apoptosis. Cell Growth and Differentiation, 13(9), 449-455.
      Chu, C. T., Ji, J., Dagda, R. K., Jiang, J. F., Tyurina, Y. Y., Kapralov, A. A., Tyurin, V. A., Yanamala, N., Shrivastava, I. H., Mohammadyani, D., Qiang Wang, K. Z., Zhu, J., Klein-Seetharaman, J., Balasubramanian, K., Amoscato, A. A., Borisenko, G., Huang, Z., Gusdon, A. M., Cheikhi, A., … Kagan, V. E. (2013). Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nature Cell Biology, 15(10), 1197-1205. https://doi.org/10.1038/ncb2837.
      Xu, S., Cherok, E., Das, S., Li, S., Roelofs, B. A., Ge, S. X., Polster, B. M., Boyman, L., Lederer, W. J., Wang, C., & Karbowski, M. (2016). Mitochondrial E3 ubiquitin ligase MARCH5 controls mitochondrial fission and cell sensitivity to stress-induced apoptosis through regulation of MiD49 protein. Molecular Biology of the Cell, 27(2), 349-359. https://doi.org/10.1091/mbc.e15-09-0678.
      Wu, X., Yan, R., Cao, P., Qian, H., & Yan, N. (2022). Structural advances in sterol-sensing domain-containing proteins. Trends in Biochemical Sciences, 47(4), 289-300. https://doi.org/10.1016/j.tibs.2021.12.005.
      Yan, R., Cao, P., Song, W., Qian, H., Du, X., Coates, H. W., Zhao, X., Li, Y., Gao, S., Gong, X., Liu, X., Sui, J., Lei, J., Yang, H., Brown, A. J., Zhou, Q., Yan, C., & Yan, N. (2021). A structure of human scap bound to insig-2 suggests how their interaction is regulated by sterols. Science, 371(6533). https://doi.org/10.1126/science.abb2224.
      Chen, H., Qi, X., Faulkner, R. A., Schumacher, M. M., Donnelly, L. M., DeBose-Boyd, R. A., & Li, X. (2022). Regulated degradation of HMG CoA reductase requires conformational changes in sterol-sensing domain. Nature Communications, 13(1), 4273. https://doi.org/10.1038/s41467-022-32025-5.
      Kuwabara, P. E., & Labouesse, M. (2002). The sterol-sensing domain: Multiple families, a unique role? Trends in Genetics, 18(4), 193-201. https://doi.org/10.1016/S0168-9525(02)02640-9.
      Cook, E. C. L., Nelson, J. K., Sorrentino, V., Koenis, D., Moeton, M., Scheij, S., Ottenhoff, R., Bleijlevens, B., Loregger, A., & Zelcer, N. (2017). Identification of the ER-resident E3 ubiquitin ligase RNF145 as a novel LXR-regulated gene. PLOS ONE, 12(2), e0172721. https://doi.org/10.1371/journal.pone.0172721.
      Schultz, M. L., Krus, K. L., Kaushik, S., Dang, D., Chopra, R., Qi, L., Shakkottai, V. G., Cuervo, A. M., & Lieberman, A. P. (2018). Coordinate regulation of mutant NPC1 degradation by selective ER autophagy and MARCH6-dependent ERAD. Nature Communications, 9(1), 3671. https://doi.org/10.1038/s41467-018-06115-2.
      Stefanovic-Barrett, S., Dickson, A. S., Burr, S. P., Williamson, J. C., Lobb, I. T., van den Boomen, D. J., Lehner, P. J., & Nathan, J. A. (2018). MARCH6 and TRC8 facilitate the quality control of cytosolic and tail-anchored proteins. EMBO Reports, e45603. https://doi.org/10.15252/embr.201745603.
      Nguyen, K. T., Mun, S.-H., Yang, J., Lee, J., Seok, O.-H., Kim, E., Kim, D., An, S. Y., Seo, D.-Y., Suh, J.-Y., Lee, Y., & Hwang, C.-S. (2022). The MARCHF6 E3 ubiquitin ligase acts as an NADPH sensor for the regulation of ferroptosis. Nature Cell Biology, 24(8), 1239-1251. https://doi.org/10.1038/s41556-022-00973-1.
      Hulce, J. J., Cognetta, A. B., Niphakis, M. J., Tully, S. E., & Cravatt, B. F. (2013). Proteome-wide mapping of cholesterol-interacting proteins in mammalian cells. Nature Methods, 10(3), 259-264. https://doi.org/10.1038/nmeth.2368.
      Zelcer, N., Sharpe, L. J., Loregger, A., Kristiana, I., Cook, E. C. L., Phan, L., Stevenson, J., & Brown, A. J. (2014). The E3 ubiquitin ligase MARCH6 degrades squalene monooxygenase and affects 3-hydroxy-3-methyl-glutaryl coenzyme A reductase and the cholesterol synthesis pathway. Molecular and Cellular Biology, 34(7), 1262-1270. https://doi.org/10.1128/MCB.01140-13.
      Sharpe, L. J., Howe, V., Scott, N. A., Luu, W., Phan, L., Berk, J. M., Hochstrasser, M., & Brown, A. J. (2019). Cholesterol increases protein levels of the E3 ligase MARCH6 and thereby stimulates protein degradation. Journal of Biological Chemistry, 294(7), 2436-2448. https://doi.org/10.1074/jbc.RA118.005069.
      Zhang, L., Rajbhandari, P., Priest, C., Sandhu, J., Wu, X., Temel, R., Castrillo, A., De Aguiar Vallim, T. Q., Sallam, T., & Tontonoz, P. (2017). Inhibition of cholesterol biosynthesis through RNF145-dependent ubiquitination of SCAP. ELife, 6(e28766). https://doi.org/10.7554/eLife.28766.
      Lee, Y.-C., Christensen, J. J., Parnell, L. D., Smith, C. E., Shao, J., McKeown, N. M., Ordovás, J. M., & Lai, C.-Q. (2022). Using machine learning to predict obesity based on genome-wide and epigenome-wide gene-gene and gene-diet interactions. Frontiers in Genetics, 12(January), 1-11. https://doi.org/10.3389/fgene.2021.783845.
      Ming, J., Wei, X., Han, M., Adi, D., Abuzhalihan, J., Wang, Y.-T., Yang, Y.-N., Li, X.-M., Xie, X., Fu, Z.-Y., Gai, M.-T., & Ma, Y.-T. (2021). Genetic variation of RNF145 gene and blood lipid levels in Xinjiang population, China. Scientific Reports, 11(1), 5969. https://doi.org/10.1038/s41598-021-85503-z.
      Zhang, C., Yang, Y., Wang, K., Chen, M., Lu, M., Hu, C., Du, X., Xing, B., & Liu, X. (2022). The Systematic analyses of RING finger gene signature for predicting the prognosis of patients with hepatocellular carcinoma. Journal of Oncology, 2022, 1. https://doi.org/10.1155/2022/2466006.
      Jiang, L.-Y., Jiang, W., Tian, N., Xiong, Y.-N., Liu, J., Wei, J., Wu, K.-Y., Luo, J., Shi, X.-J., & Song, B.-L. (2018). Ring finger protein 145 (RNF145) is a ubiquitin ligase for sterol-induced degradation of HMG-CoA reductase. Journal of Biological Chemistry, 293(11), 4047-4055. https://doi.org/10.1074/jbc.RA117.001260.
      Menzies, S. A., Volkmar, N., van den Boomen, D. J., Timms, R. T., Dickson, A. S., Nathan, J. A., & Lehner, P. J. (2018). The sterol-responsive RNF145 E3 ubiquitin ligase mediates the degradation of HMG-CoA reductase together with gp78 and Hrd1. ELife, 7, 391789. https://doi.org/10.7554/eLife.40009.
      Volkmar, N., Gawden-Bone, C. M., Williamson, J. C., Nixon-Abell, J., West, J. A., St George-Hyslop, P. H., Kaser, A., & Lehner, P. J. (2022). Regulation of membrane fluidity by RNF145-triggered degradation of the lipid hydrolase ADIPOR2. The EMBO Journal, 41(19), e110777. https://doi.org/10.15252/embj.2022110777.
      Ruiz, M., Devkota, R., Panagaki, D., Bergh, P.-O., Kaper, D., Henricsson, M., Nik, A., Petkevicius, K., Höög, J. L., Bohlooly-Y, M., Carlsson, P., Borén, J., & Pilon, M. (2022). Sphingosine 1-phosphate mediates adiponectin receptor signaling essential for lipid homeostasis and embryogenesis. Nature Communications, 13(1), 7162. https://doi.org/10.1038/s41467-022-34931-0.
      Hantouche, C., Williamson, B., Valinsky, W. C., Solomon, J., Shrier, A., & Young, J. C. (2017). Bag1 co-chaperone promotes TRC8 E3 ligase-dependent degradation of misfolded human ether a go-go-related gene (hERG) potassium channels. Journal of Biological Chemistry, 292(6), 2287-2300. https://doi.org/10.1074/jbc.M116.752618.
      Stagg, H. R., Thomas, M., van den Boomen, D., Wiertz, E. J. H. J., Drabkin, H. A., Gemmill, R. M., & Lehner, P. J. (2009). The TRC8 E3 ligase ubiquitinates MHC class I molecules before dislocation from the ER. Journal of Cell Biology, 186(5), 685-692. https://doi.org/10.1083/jcb.200906110.
      Lee, J. P., Brauweiler, A., Rudolph, M., Hooper, J. E., Drabkin, H. A., & Gemmill, R. M. (2010). The TRC8 ubiquitin ligase is sterol regulated and interacts with lipid and protein biosynthetic pathways. Molecular Cancer Research, 8(1), 93-106. https://doi.org/10.1158/1541-7786.MCR-08-0491.
      Irisawa, M., Inoue, J., Ozawa, N., Mori, K., & Sato, R. (2009). The sterol-sensing endoplasmic reticulum (ER) membrane protein TRC8 Hampers ER to golgi transport of Sterol Regulatory Element-binding Protein-2 (SREBP-2)/SREBP cleavage-activated protein and reduces SREBP-2 cleavage. Journal of Biological Chemistry, 284(42), 28995-29004. https://doi.org/10.1074/jbc.M109.041376.
      Mendoza, D. D., & Pilon, M. (2019). Progress in Lipid Research Control of membrane lipid homeostasis by lipid-bilayer associated sensors : A mechanism conserved from bacteria to humans. Progress in Lipid Research, 76(August), 100996. https://doi.org/10.1016/0005-2736(72)90008-9.
      Van Meer, G., Voelker, D. R., & Feigenson, G. W. (2008). Membrane lipids: Where they are and how they behave. Nature Reviews Molecular Cell Biology, 9(2), 112-124. https://doi.org/10.1038/nrm2330.
      Aguilar, P. S., Cronan, J. E., & De Mendoza, D. (1998). A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase. Journal of Bacteriology, 180(8), 2194-2200. https://doi.org/10.1128/JB.180.8.2194-2200.1998.
      Inda, M. E., Vandenbranden, M., Fernández, A., de Mendoza, D., Ruysschaert, J.-M., & Cybulski, L. E. (2014). A lipid-mediated conformational switch modulates the thermosensing activity of DesK. Proceedings of the National Academy of Sciences, 111(9), 3579-3584. https://doi.org/10.1073/pnas.1317147111.
      Ruiz, M., Bodhicharla, R., Svensk, E., Devkota, R., Busayavalasa, K., Palmgren, H., Ståhlman, M., Boren, J., & Pilon, M. (2018). Membrane fluidity is regulated by the C. elegans transmembrane protein FLD-1 and its human homologs TLCD1/2. ELife, 7, 1-25. https://doi.org/10.7554/eLife.40686.
      Abriata, L. A., Albanesi, D., Dal Peraro, M., & de Mendoza, D. (2017). Signal sensing and transduction by histidine kinases as unveiled through studies on a temperature sensor. Accounts of Chemical Research, 50(6), 1359-1366. https://doi.org/10.1021/acs.accounts.6b00593.
      Radanović, T., Reinhard, J., Ballweg, S., Pesek, K., & Ernst, R. (2018). An emerging group of membrane property sensors controls the physical state of organellar membranes to maintain their identity. BioEssays, 40(5), 1700250. https://doi.org/10.1002/bies.201700250.
      Svensk, E., Ståhlman, M., Andersson, C.-H., Johansson, M., Borén, J., & Pilon, M. (2013). PAQR-2 regulates fatty acid desaturation during cold adaptation in C. elegans. PLoS Genetics, 9(9), e1003801. https://doi.org/10.1371/journal.pgen.1003801.
      Svensk, E., Devkota, R., Ståhlman, M., Ranji, P., Rauthan, M., Magnusson, F., Hammarsten, S., Johansson, M., Borén, J., & Pilon, M. (2016). Caenorhabditis elegans PAQR-2 and IGLR-2 protect against glucose toxicity by modulating membrane lipid composition. PLOS Genetics, 12(4), e1005982. https://doi.org/10.1371/journal.pgen.1005982.
      Devkota, R., Svensk, E., Ruiz, M., Ståhlman, M., Borén, J., & Pilon, M. (2017). The adiponectin receptor AdipoR2 and its Caenorhabditis elegans homolog PAQR-2 prevent membrane rigidification by exogenous saturated fatty acids. PLOS Genetics, 13(9), e1007004. https://doi.org/10.1371/journal.pgen.1007004.
      Ruiz, M., Ståhlman, M., Borén, J., & Pilon, M. (2019). AdipoR1 and AdipoR2 maintain membrane fluidity in most human cell types and independently of adiponectin. Journal of Lipid Research, 60(5), 995-1004. https://doi.org/10.1194/jlr.M092494.
      Bodhicharla, R., Devkota, R., Ruiz, M., & Pilon, M. (2018). Membrane fluidity is regulated cell nonautonomously by Caenorhabditis elegans PAQR-2 and its mammalian homolog AdipoR2. Genetics, 210(1), 189-201. https://doi.org/10.1534/genetics.118.301272.
      Svensk, E., Biermann, J., Hammarsten, S., Magnusson, F., & Pilon, M. (2016). Leveraging the withered tail tip phenotype in C. elegans to identify proteins that influence membrane properties. Worm, 5(3), e1206171. https://doi.org/10.1080/21624054.2016.1206171.
      Devkota, R., Henricsson, M., Borén, J., & Pilon, M. (2021). The C. elegans PAQR-2 and IGLR-2 membrane homeostasis proteins are uniquely essential for tolerating dietary saturated fats. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1866(4), 158883. https://doi.org/10.1016/j.bbalip.2021.158883.
      Yamauchi, T., Kamon, J., Ito, Y., Tsuchida, A., Yokomizo, T., Kita, S., Sugiyama, T., Miyagishi, M., Hara, K., Tsunoda, M., Murakami, K., Ohteki, T., Uchida, S., Takekawa, S., Waki, H., Tsuno, N. H., Shibata, Y., Terauchi, Y., Froguel, P., … Kadowaki, T. (2003). Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature, 423(6941), 762-769. https://doi.org/10.1038/nature01705.
      Keshvari, S., & Whitehead, J. P. (2015). Characterisation of the adiponectin receptors: Differential cell-surface expression and temporal signalling profiles of AdipoR1 and AdipoR2 are regulated by the non-conserved N-terminal trunks. Molecular and Cellular Endocrinology, 409, 121-129. https://doi.org/10.1016/j.mce.2015.04.003.
      Villa, N. Y., Kupchak, B. R., Garitaonandia, I., Smith, J. L., Alonso, E., Alford, C., Cowart, L. A., Hannun, Y. A., & Lyons, T. J. (2009). Sphingolipids function as downstream effectors of a fungal PAQR. Molecular Pharmacology, 75(4), 866-875. https://doi.org/10.1124/mol.108.049809.
      Tanabe, H., Fujii, Y., Okada-Iwabu, M., Iwabu, M., Nakamura, Y., Hosaka, T., Motoyama, K., Ikeda, M., Wakiyama, M., Terada, T., Ohsawa, N., Hato, M., Ogasawara, S., Hino, T., Murata, T., Iwata, S., Hirata, K., Kawano, Y., Yamamoto, M., … Yokoyama, S. (2015). Crystal structures of the human adiponectin receptors. Nature, 520(7547), 312-316. https://doi.org/10.1038/nature14301.
      Vasiliauskaité-Brooks, I., Sounier, R., Rochaix, P., Bellot, G., Fortier, M., Hoh, F., De Colibus, L., Bechara, C., Saied, E. M., Arenz, C., Leyrat, C., & Granier, S. (2017). Structural insights into adiponectin receptors suggest ceramidase activity. Nature, 544(7648), 120-123. https://doi.org/10.1038/nature21714.
      Holland, W. L., Xia, J. Y., Johnson, J. A., Sun, K., Pearson, M. J., Sharma, A. X., Quittner-Strom, E., Tippetts, T. S., Gordillo, R., & Scherer, P. E. (2017). Inducible overexpression of adiponectin receptors highlight the roles of adiponectin-induced ceramidase signaling in lipid and glucose homeostasis. Molecular Metabolism, 6(3), 267-275. https://doi.org/10.1016/j.molmet.2017.01.002.
      Almabouada, F., Diaz-Ruiz, A., Rabanal-Ruiz, Y., Peinado, J. R., Vazquez-Martinez, R., & Malagon, M. M. (2013). Adiponectin receptors form homomers and heteromers exhibiting distinct ligand binding and intracellular signaling properties. Journal of Biological Chemistry, 288(5), 3112-3125. https://doi.org/10.1074/jbc.M112.404624.
      Ruiz, M., Henricsson, M., Borén, J., & Pilon, M. (2021). Palmitic acid causes increased dihydroceramide levels when desaturase expression is directly silenced or indirectly lowered by silencing AdipoR2. Lipids in Health and Disease, 20(1), 173. https://doi.org/10.1186/s12944-021-01600-y.
      Gohrbandt, M., Lipski, A., Grimshaw, J. W., Buttress, J. A., Baig, Z., Herkenhoff, B., Walter, S., Kurre, R., Deckers-Hebestreit, G., & Strahl, H. (2022). Low membrane fluidity triggers lipid phase separation and protein segregation in living bacteria. The EMBO Journal, 41(5), 1-21. https://doi.org/10.15252/embj.2021109800.
      Yan, R., Cao, P., Song, W., Li, Y., Wang, T., Qian, H., Yan, C., & Yan, N. (2021). Structural basis for sterol sensing by Scap and Insig. Cell Reports, 35(13), 109299. https://doi.org/10.1016/j.celrep.2021.109299.
      Tanabe, H., Fujii, Y., Okada-Iwabu, M., Iwabu, M., Kano, K., Kawana, H., Hato, M., Nakamura, Y., Terada, T., Kimura-Someya, T., Shirouzu, M., Kawano, Y., Yamamoto, M., Aoki, J., Yamauchi, T., Kadowaki, T., & Yokoyama, S. (2020). Human adiponectin receptor AdipoR1 assumes closed and open structures. Communications Biology, 3(1), 446. https://doi.org/10.1038/s42003-020-01160-4.
      Umebayashi, M., Takemoto, S., Reymond, L., Sundukova, M., Hovius, R., Bucci, A., Heppenstall, P. A., Yokota, H., Johnsson, K., & Riezman, H. (2023). A covalently linked probe to monitor local membrane properties surrounding plasma membrane proteins. Journal of Cell Biology, 222(3). https://doi.org/10.1083/jcb.202206119.
      Chen, X., Bayard, F., Gonzalez-Sanchis, N., Pamungkas, K. K. P., Sakai, N., & Matile, S. (2023). Fluorescent flippers: Small-molecule probes to image membrane tension in living systems. Angewandte Chemie International Edition, 61(5), 26-27. https://doi.org/10.1002/anie.202217868.
      Alvarez, S. E., Harikumar, K. B., Hait, N. C., Allegood, J., Strub, G. M., Kim, E. Y., Maceyka, M., Jiang, H., Luo, C., Kordula, T., Milstien, S., & Spiegel, S. (2010). Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature, 465(7301), 1084-1088. https://doi.org/10.1038/nature09128.
      Ito, N., Takahashi, T., Shiiba, I., Nagashima, S., Inatome, R., & Yanagi, S. (2022). MITOL regulates phosphatidic acid-binding activity of RMDN3/PTPIP51. The Journal of Biochemistry, 171(5), 529-541. https://doi.org/10.1093/jb/mvab153.
      Qian, L., Scott, N. A., Capell-Hattam, I. M., Draper, E. A., Fenton, N. M., Luu, W., Sharpe, L. J., & Brown, A. J. (2023). Cholesterol synthesis enzyme SC4MOL is fine-tuned by sterols and targeted for degradation by the E3 ligase MARCHF6. Journal of Lipid Research, 64(5), 100362. https://doi.org/10.1016/j.jlr.2023.100362.
      Nelson, J. K., Cook, E. C. L., Loregger, A., Hoeksema, M. A., Scheij, S., Kovacevic, I., Hordijk, P. L., Ovaa, H., & Zelcer, N. (2016). Deubiquitylase inhibition reveals liver X receptor-independent transcriptional regulation of the E3 ubiquitin ligase IDOL and lipoprotein uptake. Journal of Biological Chemistry, 291(9), 4813-4825. https://doi.org/10.1074/jbc.M115.698688.
      Kaliszewski, P., Szkopińska, A., Ferreira, T., Świezewska, E., Berges, T., & Zołądek, T. (2008). Rsp5p ubiquitin ligase and the transcriptional activators Spt23p and Mga2p are involved in co-regulation of biosynthesis of end products of the mevalonate pathway and triacylglycerol in yeast Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1781(10), 627-634. https://doi.org/10.1016/j.bbalip.2008.07.011.
    • Grant Information:
      210688/Z/18/Z United Kingdom WT_ Wellcome Trust
    • Contributed Indexing:
      Keywords: ADIPOR2; E3 ubiquitin ligases; RNF145; homeoviscous adaption; lipids; protein degradation
    • Accession Number:
      EC 2.3.2.27 (Ubiquitin-Protein Ligases)
      0 (Ubiquitin)
      EC 3.4.25.1 (Proteasome Endopeptidase Complex)
      0 (Membrane Lipids)
    • Publication Date:
      Date Created: 20231027 Date Completed: 20231122 Latest Revision: 20240228
    • Publication Date:
      20240228
    • Accession Number:
      10.1002/bies.202300139
    • Accession Number:
      37890275