An automated model annotation system (AMAS) for SBML models.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Oxford University Press Country of Publication: England NLM ID: 9808944 Publication Model: Print Cited Medium: Internet ISSN: 1367-4811 (Electronic) Linking ISSN: 13674803 NLM ISO Abbreviation: Bioinformatics Subsets: MEDLINE
    • Publication Information:
      Original Publication: Oxford : Oxford University Press, c1998-
    • Subject Terms:
    • Abstract:
      Motivation: Annotations of biochemical models provide details of chemical species, documentation of chemical reactions, and other essential information. Unfortunately, the vast majority of biochemical models have few, if any, annotations, or the annotations provide insufficient detail to understand the limitations of the model. The quality and quantity of annotations can be improved by developing tools that recommend annotations. For example, recommender tools have been developed for annotations of genes. Although annotating genes is conceptually similar to annotating biochemical models, there are important technical differences that make it difficult to directly apply this prior work.
      Results: We present AMAS, a system that predicts annotations for elements of models represented in the Systems Biology Markup Language (SBML) community standard. We provide a general framework for predicting model annotations for a query element based on a database of annotated reference elements and a match score function that calculates the similarity between the query element and reference elements. The framework is instantiated to specific element types (e.g. species, reactions) by specifying the reference database (e.g. ChEBI for species) and the match score function (e.g. string similarity). We analyze the computational efficiency and prediction quality of AMAS for species and reactions in BiGG and BioModels and find that it has subsecond response times and accuracy between 80% and 95% depending on specifics of what is predicted. We have incorporated AMAS into an open-source, pip-installable Python package that can run as a command-line tool that predicts and adds annotations to species and reactions to an SBML model.
      Availability and Implementation: Our project is hosted at https://github.com/sys-bio/AMAS, where we provide examples, documentation, and source code files. Our source code is licensed under the MIT open-source license.
      (© The Author(s) 2023. Published by Oxford University Press.)
    • Comments:
      Update of: bioRxiv. 2023 Jul 21;:. (PMID: 37503075)
    • References:
      Bioinformatics. 2010 Feb 1;26(3):421-2. (PMID: 19933161)
      Mol Syst Biol. 2011 Jul 19;7:512. (PMID: 21772260)
      Nucleic Acids Res. 2007 Jan;35(Database issue):D61-5. (PMID: 17130148)
      Nucleic Acids Res. 2015 Apr 30;43(8):3899-910. (PMID: 25845595)
      BMC Genomics. 2008 Feb 08;9:75. (PMID: 18261238)
      PLoS Comput Biol. 2022 Sep 8;18(9):e1010452. (PMID: 36074804)
      Nucleic Acids Res. 2021 Jan 8;49(D1):D412-D419. (PMID: 33125078)
      Brief Bioinform. 2019 Mar 22;20(2):540-550. (PMID: 30462164)
      Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W20-5. (PMID: 15215342)
      Genome Biol. 2019 Aug 7;20(1):158. (PMID: 31391098)
      Proc Natl Acad Sci U S A. 2019 Nov 5;116(45):22651-22656. (PMID: 31636175)
      Mol Syst Biol. 2011 Oct 25;7:543. (PMID: 22027554)
      BMC Syst Biol. 2015 Oct 09;9:68. (PMID: 26452770)
      Nucleic Acids Res. 2022 Jan 7;50(D1):D687-D692. (PMID: 34788843)
      Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37. (PMID: 21593126)
      Nucleic Acids Res. 2012 Jan;40(Database issue):D754-60. (PMID: 22135291)
      Nat Genet. 2000 May;25(1):25-9. (PMID: 10802651)
      Nucleic Acids Res. 2018 Jan 4;46(D1):D656-D660. (PMID: 29092055)
      J Mol Biol. 1970 Mar;48(3):443-53. (PMID: 5420325)
      BMC Bioinformatics. 2019 Sep 6;20(1):457. (PMID: 31492098)
      NPJ Syst Biol Appl. 2019 Oct 8;5:37. (PMID: 31602314)
      Nat Biotechnol. 2010 Sep;28(9):977-82. (PMID: 20802497)
      Nucleic Acids Res. 2015 Jan;43(Database issue):D204-12. (PMID: 25348405)
      Bioinformatics. 2023 Jul 1;39(7):. (PMID: 37449910)
      Biosystems. 2006 Feb-Mar;83(2-3):207-16. (PMID: 16242236)
      Brief Bioinform. 2019 Jul 19;20(4):1085-1093. (PMID: 29447345)
      Nucleic Acids Res. 2008 Jan;36(Database issue):D344-50. (PMID: 17932057)
    • Grant Information:
      P41 EB023912 United States EB NIBIB NIH HHS
    • Publication Date:
      Date Created: 20231026 Date Completed: 20231107 Latest Revision: 20240210
    • Publication Date:
      20240210
    • Accession Number:
      PMC10628433
    • Accession Number:
      10.1093/bioinformatics/btad658
    • Accession Number:
      37882737