Modelling DTPA therapy following Am contamination in rats.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 0415677 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-2099 (Electronic) Linking ISSN: 0301634X NLM ISO Abbreviation: Radiat Environ Biophys Subsets: MEDLINE
    • Publication Information:
      Original Publication: Berlin, New York, Springer-Verlag.
    • Subject Terms:
    • Abstract:
      A major challenge in modelling the decorporation of actinides (An), such as americium (Am), with DTPA (diethylenetriaminepentaacetic acid) is the fact that standard biokinetic models become inadequate for assessing radionuclide intake and estimating the resulting dose, as DTPA perturbs the regular biokinetics of the radionuclide. At present, most attempts existing in the literature are empirical and developed mainly for the interpretation of one or a limited number of specific incorporation cases. Recently, several approaches have been presented with the aim of developing a generic model, one of which reported the unperturbed biokinetics of plutonium (Pu), the chelation process and the behaviour of the chelated compound An-DTPA with a single model structure. The aim of the approach described in this present work is the development of a generic model that is able to describe the biokinetics of Am, DTPA and the chelate Am-DTPA simultaneously. Since accidental intakes in humans present many unknowns and large uncertainties, data from controlled studies in animals were used. In these studies, different amounts of DTPA were administered at different times after contamination with known quantities of Am. To account for the enhancement of faecal excretion and reduction in liver retention, DTPA is assumed to chelate Am not only in extracellular fluids, but also in hepatocytes. A good agreement was found between the predictions of the proposed model and the experimental results for urinary and faecal excretion and accumulation and retention in the liver. However, the decorporation from the skeletal compartment could not be reproduced satisfactorily under these simple assumptions.
      (© 2023. The Author(s).)
    • References:
      Health Phys. 2021 Jun 1;120(6):600-617. (PMID: 33577223)
      Int J Radiat Biol. 1999 Aug;75(8):929-41. (PMID: 10465359)
      Appl Radiat Isot. 2005 Jun;62(6):829-46. (PMID: 15799861)
      Ann ICRP. 2019 Dec;48(2-3):9-501. (PMID: 31850780)
      Health Phys. 1972 Jun;22(6):787-92. (PMID: 5084012)
      Health Phys. 2022 Sep 1;123(3):197-207. (PMID: 35613373)
      Radiat Prot Dosimetry. 2007;127(1-4):120-4. (PMID: 17562647)
      Radiat Prot Dosimetry. 2007;127(1-4):469-71. (PMID: 17556346)
      Radiat Res. 2019 Dec;192(6):680-681. (PMID: 31556845)
      Radiat Prot Dosimetry. 2007;127(1-4):449-55. (PMID: 18227077)
      Radiat Res. 1961 Aug;15:220-6. (PMID: 13748712)
      Radiat Environ Biophys. 2019 May;58(2):227-235. (PMID: 30627772)
      Radiat Res. 1978 Aug;75(2):397-409. (PMID: 102009)
      Health Phys. 2022 Nov 1;123(5):348-359. (PMID: 35951340)
      Health Phys. 1978 May;34(5):419-31. (PMID: 711453)
      Health Phys. 2017 Jul;113(1):30-40. (PMID: 28542009)
      Radiat Res. 2019 Feb;191(2):201-210. (PMID: 30566387)
      Health Phys. 2021 Nov 1;121(5):494-505. (PMID: 34591820)
      Health Phys. 2023 Feb 1;124(2):113-124. (PMID: 36625835)
      Radiat Prot Dosimetry. 2003;105(1-4):509-12. (PMID: 14527019)
      Metabolism. 1998 Apr;47(4):484-92. (PMID: 9550550)
      Phys Med Biol. 1968 Oct;13(4):535-46. (PMID: 5683324)
      Health Phys. 2015 Jun;108(6):565-73. (PMID: 25905517)
      Health Phys. 2020 Dec;119(6):715-732. (PMID: 33196524)
      Health Phys. 2010 Oct;99(4):532-8. (PMID: 20838095)
      Ann ICRP. 2015 Sep;44(2):5-188. (PMID: 26494836)
      J Occup Med. 1960 Aug;2:371-6. (PMID: 14427692)
      Radiat Res. 2009 Jun;171(6):674-86. (PMID: 19580474)
      Health Phys. 2020 Feb;118(2):193-205. (PMID: 31833972)
      Magn Reson Imaging. 1990;8(5):567-75. (PMID: 2082126)
      Sci Total Environ. 1989 Jul 15;83(3):217-25. (PMID: 2781271)
      Health Phys. 1972 Sep;23(3):333-41. (PMID: 4629952)
      Health Phys. 1973 Mar;24(3):317-26. (PMID: 4691640)
      Radiat Res. 2019 Jul;192(1):75-91. (PMID: 31107639)
      Health Phys. 1978 Nov;35(5):694-9. (PMID: 744734)
      Health Phys. 2010 Oct;99(4):553-9. (PMID: 20838098)
      Health Phys. 1997 Feb;72(2):222-35. (PMID: 9003707)
      Radiat Prot Dosimetry. 2009 Feb;134(1):38-48. (PMID: 19351653)
      Radiat Res. 1978 Oct;76(1):180-6. (PMID: 734044)
      Radiat Res. 2016 Jun;185(6):568-79. (PMID: 27195610)
      Radiat Res. 1979 Oct;80(1):108-15. (PMID: 504565)
      Health Phys. 1983 Jan;44(1):45-52. (PMID: 6826365)
      Radiat Res. 1978 Apr;74(1):179-85. (PMID: 674564)
      Health Phys. 2016 Jan;110(1):59-65. (PMID: 26606066)
      Radiat Prot Dosimetry. 2007;127(1-4):435-9. (PMID: 17940101)
      Health Phys. 2000 May;78(5):563-5. (PMID: 10772031)
      Health Phys. 2016 Jun;110(6):551-7. (PMID: 27115221)
      Health Phys. 1972 Apr;22(4):369-72. (PMID: 5045196)
      Radiat Res. 1974 Jun;58(3):439-47. (PMID: 10876634)
      Chem Rev. 2003 Nov;103(11):4207-82. (PMID: 14611263)
      Ann ICRP. 2016 Nov;45(2):5-73. (PMID: 29749258)
      Int J Radiat Biol Relat Stud Phys Chem Med. 1964;8:271-8. (PMID: 14234753)
      Health Phys. 2019 Aug;117(2):168-178. (PMID: 30489383)
    • Contributed Indexing:
      Keywords: Americium; Biokinetic model; Chelation; DTPA; Decorporation
    • Accession Number:
      7A314HQM0I (Pentetic Acid)
      VW92PHU2UY (Americium)
      0 (Chelating Agents)
      53023GN24M (Plutonium)
    • Publication Date:
      Date Created: 20231013 Date Completed: 20231108 Latest Revision: 20231201
    • Publication Date:
      20231215
    • Accession Number:
      PMC10628027
    • Accession Number:
      10.1007/s00411-023-01046-z
    • Accession Number:
      37831188