Comparative analysis of pancreatic amylase activity in laboratory rodents.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • Subject Terms:
    • Abstract:
      Alpha-amylase is the main enzyme for starch digestion in the mammalian gastrointestinal tract. There are species differences in the enzymatic activity of pancreatic amylase that are related to the digestive strategy and natural diet of a species. This aspect is well investigated in pet and farm animals, while in common laboratory animal rodents, information is scarce. In the context of the 3R concept, detailed knowledge of the digestive physiology should be the basis of adequate nutrition, experimental planning and data interpretation. The present study aimed to obtain reference data on amylase activity in pancreatic tissue and duodenal digesta in laboratory mice, rats and hamsters. In addition, digesta was stained with Lugol's iodine to visualize starch in the process of degradation throughout the gastrointestinal tract. Amylase activity in pancreatic tissue and duodenal digesta was significantly lower in hamsters than rats and mice. The Lugol staining showed intense starch degradation in the hamsters' forestomachs, presumably by microbial fermentation. A possible explanation is that the prae-duodenal microbial starch fermentation enhances digestibility and reduces the need for pancreatic amylase in hamsters. Rats and mice may rely more on pancreatic amylase for prae-caecal starch digestion, while the microbial fermentation is mainly located in the caecum. The results clearly show species differences in the digestive capacity for starch in mice, rats and hamsters that need to be considered in the feeding of these species in the laboratory setting as well as in the use of rodents as translational animal models.
      (© 2023. Springer Nature Limited.)
    • References:
      Boehlke, C., Zierau, O. & Hannig, C. Salivary amylase–The enzyme of unspecialized euryphagous animals. Arch. Oral Biol. 60(8), 1162–1176 (2015). (PMID: 2604344610.1016/j.archoralbio.2015.05.008)
      Apple, F. et al. Lipase and pancreatic amylase activities in tissues and in patients with hyperamylasemia. Am. J. Clin. Pathol. 96(5), 610–614 (1991). (PMID: 171979810.1093/ajcp/96.5.610)
      Whitcomb, D. C. & Lowe, M. E. Human pancreatic digestive enzymes. Dig. Dis. Sci. 52(1), 1–17 (2007). (PMID: 1720539910.1007/s10620-006-9589-z)
      Matsuo, R. & Carpenter, G. H. The role of saliva in taste transduction. In Handbook of Olfaction and Gustation (ed. Doty, R. L.) 623–636 (Wiley, 2015). (PMID: 10.1002/9781118971758.ch28)
      Souffrant, W. et al. Untersuchungen zur exokrinen Pankreassekretion beim Schwein nach Verfütterung von Sojaextraktionsschrot. Archiv. für. Tierernaehrung 35(6), 383–389 (1985). (PMID: 10.1080/17450398509425200)
      Jensen, M., Jensen, S. & Jakobsen, K. Development of digestive enzymes in pigs with emphasis on lipolytic activity in the stomach and pancreas. J. Anim. Sci. 75(2), 437–445 (1997). (PMID: 905146710.2527/1997.752437x)
      Owsley, W., Orr, D. Jr. & Tribble, L. Effects of age and diet on the development of the pancreas and the synthesis and secretion of pancreatic enzymes in the young pig. J. Anim. Sci. 63(2), 497–504 (1986). (PMID: 242879910.2527/jas1986.632497x)
      Mosenthin, R. & Sauer, W. Exocrine pancreatic secretions in pigs as influenced by the source of carbohydrate in the diet. Z. Ernahrungswiss. 32(2), 152–155 (1993). (PMID: 769101810.1007/BF01614758)
      Mosenthin, R., Sauer, W. C. & Ahrens, F. Dietary pectin’s effect on ileal and fecal amino acid digestibility and exocrine pancreatic secretions in growing pigs. J. Nutr. 124(8), 1222–1229 (1994). (PMID: 791491710.1093/jn/124.8.1222)
      Flores, C. A. et al. Effect of diet on intestinal and pancreatic enzyme activities in the pig. J. Pediatr. Gastroenterol. Nutr. 7(6), 914–921 (1988). (PMID: 319927810.1097/00005176-198811000-00021)
      Kienzle, E. Enzymaktivität in pancreas, darmwand und chymus des hundes in abhängigkeit von alter und futterart. J. Anim. Physiol. Anim. Nutr. 60(1–5), 276–288 (1988). (PMID: 10.1111/j.1439-0396.1988.tb00203.x)
      Arendt, M. et al. Amylase activity is associated with AMY 2B copy numbers in dog: Implications for dog domestication, diet and diabetes. Anim. Genet. 45(5), 716–722 (2014). (PMID: 24975239432941510.1111/age.12179)
      Freedman, A. H. et al. Genome sequencing highlights the dynamic early history of dogs. PLoS Genet. 10(1), e1004016 (2014). (PMID: 24453982389417010.1371/journal.pgen.1004016)
      Kienzle, E. Carbohydrate metabolism of the cat 1. Activity of amylase in the gastrointestinal tract of the cat 1. J. Anim. Physiol. Anim. Nutr. 69(1–5), 92–101 (1993). (PMID: 10.1111/j.1439-0396.1993.tb00793.x)
      Hudman, D. et al. Digestive enzymes of the baby pig. Pancreatic and salivary amylase. J. Agric. Food Chem. 5(9), 691–693 (1957). (PMID: 10.1021/jf60079a007)
      Kienzle, E. et al. Activity of amylase in the gastrointestinal tract of the horse 1. J. Anim. Physiol. Anim. Nutr. 72(1–5), 234–241 (1994). (PMID: 10.1111/j.1439-0396.1994.tb00392.x)
      Russell, W. M. S. & Burch, R. L. The principles of humane experimental technique (Methuen, 1959).
      Renner, S. et al. Comparative aspects of rodent and nonrodent animal models for mechanistic and translational diabetes research. Theriogenology 86(1), 406–421 (2016). (PMID: 2718032910.1016/j.theriogenology.2016.04.055)
      Lavau, M., Bazin, R. & Herzog, J. Comparative effects of oral and parenteral feeding on pancreatic enzymes in the rat. J. Nutr. 104(11), 1432–1437 (1974). (PMID: 421364110.1093/jn/104.11.1432)
      Kurahashi, M. & Inomata, K. Amylase secretion by parotid glands and pancreas of diabetic rats during feeding. Am. J. Physiol. Gastrointest. Liver Physiol. 254(6), 878–882 (1988). (PMID: 10.1152/ajpgi.1988.254.6.G878)
      Kurahashi, M. & Inomata, K. Role of parotid amylase in starch digestion in the gastro-intestinal tracts of diabetic rats. J. Dent. Res. 68(9), 1366–1369 (1989). (PMID: 247647010.1177/00220345890680091501)
      Sick, K. & Nielsen, J. T. Genetics of amylase isozymes in the mouse. Hereditas 51(2–3), 291–296 (1964).
      Gittes, G. K. & Rutter, W. J. Onset of cell-specific gene expression in the developing mouse pancreas. Proc. Natl. Acad. Sci. 89(3), 1128–1132 (1992). (PMID: 13710104839910.1073/pnas.89.3.1128)
      Schibler, U. et al. Tissue-specific expression of mouse α-amylase genes. J. Mol. Biol. 142(1), 93–116 (1980). (PMID: 615947810.1016/0022-2836(80)90208-9)
      Chen, X. et al. Dominant negative Rab3D inhibits amylase release from mouse pancreatic acini. J. Biol. Chem. 277(20), 18002–18009 (2002). (PMID: 1187507710.1074/jbc.M201248200)
      Williams, J. & Lee, M. Microtubules and pancreatic amylase release by mouse pancreas in vitro. J. Cell Biol. 71(3), 795–806 (1976). (PMID: 79195710.1083/jcb.71.3.795)
      Williams, J. A. & Chandler, D. Ca++ and pancreatic amylase release. Am. J. Physiol. Leg. Content 228(6), 1729–1732 (1975). (PMID: 10.1152/ajplegacy.1975.228.6.1729)
      Powers, R. E. et al. Intracellular Ca2+ levels and amylase secretion in Quin 2-loaded mouse pancreatic acini. Am. J. Physiol. Cell Physiol. 248(5), C535–C541 (1985). (PMID: 10.1152/ajpcell.1985.248.5.C535)
      Gautam, D. et al. Cholinergic stimulation of amylase secretion from pancreatic acinar cells studied with muscarinic acetylcholine receptor mutant mice. J. Pharmacol. Exp. Ther. 313(3), 995–1002 (2005). (PMID: 1576473510.1124/jpet.105.084855)
      Takahashi, M. et al. Changes of amylase during experimental pancreatic carcinogenesis in hamsters. Gann Gan 72(4), 615–619 (1981). (PMID: 6171474)
      Wang, Y. et al. Experimental models in syrian golden hamster replicate human acute pancreatitis. Sci. Rep. 6(1), 1–10 (2016).
      Ohbo, M., Katoh, K. & Sasaki, Y. Effects of saturated fatty acids on amylase release from exocrine pancreatic segments of sheep, rats, hamsters, field voles and mice. J. Comp. Physiol. B 166(5), 305–309 (1996). (PMID: 887026110.1007/BF02439916)
      Dawson, W. D. & Huang, L. L. Comparative genetics of hamster amylases. Biochem. Genet. 19(7), 623–633 (1981). (PMID: 617029110.1007/BF00483995)
      Ohya, I. et al. Identification of human saliva by antisera to α-amylase in human salivary glands. Tohoku J. Exp. Med. 150(3), 309–315 (1986). (PMID: 310325910.1620/tjem.150.309)
      Maidment, D. C. J. & Ringham, J. M. A study into the measurement of α-amylase activity using phadebas, iodine and gel-diffusion procedures. Nutr. Food Sci. 31(3), 141–146 (2001). (PMID: 10.1108/00346650110385855)
      Ehle, F. R. & Warner, R. G. Nutritional implications of the hamster forestomach. J. Nutr. 108(7), 1047–1053 (1978). (PMID: 66029710.1093/jn/108.7.1047)
      Böhmer, E. Röntgenologische Untersuchung bei Hasenartigen und Nagern (Schwerpunkt: Magen-Darm-Trakt, Harntrakt, Wirbelsäule). Tierärztliche Praxis Ausgabe K: Kleintiere/Heimtiere 33(02), 115–125 (2005). (PMID: 10.1055/s-0037-1622454)
      Treuting, P. M., Dintzis, S. & Montine, K. S. Comparative Anatomy and Histology: a Mouse, Rat, and Human Atlas (Academic Press, 2017).
      Stevens, C. E. & Hume, I. D. Comparative Physiology of the Vertebrate Digestive System (Cambridge University Press, 2004).
      Berggren, A. M. et al. Short-chain fatty acid content and pH in caecum of rats fed various sources of starch. J. Sci. Food Agric. 68(2), 241–248 (1995). (PMID: 10.1002/jsfa.2740680216)
      Wenderlein, J. et al. Processing matters in nutrient-matched laboratory diets for mice—microbiome. Animals 11(3), 862 (2021). (PMID: 33803597800299210.3390/ani11030862)
      Wenderlein, J. et al. Morphology of starch particles along the passage through the gastrointestinal tract in laboratory mice fed extruded and pelleted diets. Animals 12(8), 952 (2022). (PMID: 35454201903239210.3390/ani12080952)
      Trotta, R. J. et al. Duodenal infusions of starch with casein or glutamic acid influence pancreatic and small intestinal carbohydrase activities in cattle. J. Nutr. 150(4), 784–791 (2020). (PMID: 3187547610.1093/jn/nxz319)
      Kreikemeier, K. et al. Influence of dietary forage and feed intake on carbohydrase activities and small intestinal morphology of calves. J. Anim. Sci. 68(9), 2916–2929 (1990). (PMID: 169875810.2527/1990.6892916x)
    • Accession Number:
      9005-25-8 (Starch)
      EC 3.2.1.1 (Pancreatic alpha-Amylases)
    • Publication Date:
      Date Created: 20231012 Date Completed: 20231107 Latest Revision: 20231120
    • Publication Date:
      20240829
    • Accession Number:
      PMC10570267
    • Accession Number:
      10.1038/s41598-023-44532-6
    • Accession Number:
      37828078