Stem-like exhausted and memory CD8 + T cells in cancer.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101124168 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1474-1768 (Electronic) Linking ISSN: 1474175X NLM ISO Abbreviation: Nat Rev Cancer Subsets: MEDLINE
    • Publication Information:
      Original Publication: London, UK : Nature Pub. Group, [c2001-
    • Subject Terms:
    • Abstract:
      T cells can acquire a broad spectrum of differentiation states following activation. At the extreme ends of this continuum are short-lived cells equipped with effector machinery and more quiescent, long-lived cells with heightened proliferative potential and stem cell-like developmental plasticity. The latter encompass stem-like exhausted T cells and memory T cells, both of which have recently emerged as key determinants of cancer immunity and response to immunotherapy. Here, we discuss key similarities and differences in the regulation and function of stem-like exhausted CD8 +  T cells and memory CD8 + T cells, and consider their context-specific contributions to protective immunity in diverse outcomes of cancer, including tumour escape, long-term control and eradication. Finally, we emphasize how recent advances in the understanding of the molecular regulation of stem-like exhausted T cells and memory T cells are being explored for clinical benefit in cancer immunotherapies such as checkpoint inhibition, adoptive cell therapy and vaccination.
      (© 2023. Springer Nature Limited.)
    • References:
      Bruni, D., Angell, H. K. & Galon, J. The immune contexture and immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer 20, 662–680 (2020). (PMID: 3275372810.1038/s41568-020-0285-7)
      Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015). (PMID: 2583837310.1126/science.aaa8172)
      Chung, H. K., McDonald, B. & Kaech, S. M. The architectural design of CD8 + T cell responses in acute and chronic infection: parallel structures with divergent fates. J. Exp. Med. 218, e20201730 (2021). (PMID: 33755719799250110.1084/jem.20201730)
      Jameson, S. C. & Masopust, D. Understanding subset diversity in T cell memory. Immunity 48, 214–226 (2018). (PMID: 29466754586374510.1016/j.immuni.2018.02.010)
      Zehn, D., Thimme, R., Lugli, E., de Almeida, G. P. & Oxenius, A. ‘Stem-like’ precursors are the fount to sustain persistent CD8 + T cell responses. Nat. Immunol. 23, 836–847 (2022). (PMID: 3562420910.1038/s41590-022-01219-w)
      McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37, 457–495 (2019). (PMID: 3067682210.1146/annurev-immunol-041015-055318)
      van der Leun, A. M. & Schumacher, T. N. An atlas of intratumoral T cells. Science 374, 1446–1447 (2021). (PMID: 3491451410.1126/science.abm9244)
      Brummelman, J. et al. High-dimensional single cell analysis identifies stem-like cytotoxic CD8 + T cells infiltrating human tumors. J. Exp. Med. 215, 2520–2535 (2018). (PMID: 30154266617017910.1084/jem.20180684)
      Siddiqui, I. et al. Intratumoral Tcf1 + PD-1 + CD8 + T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211.e10 (2019). (PMID: 3063523710.1016/j.immuni.2018.12.021)
      Miller, B. C. et al. Subsets of exhausted CD8 + T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019). (PMID: 30778252667365010.1038/s41590-019-0312-6)
      Jansen, C. S. et al. An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. Nature 576, 465–470 (2019). (PMID: 31827286710817110.1038/s41586-019-1836-5)
      Kallies, A., Zehn, D. & Utzschneider, D. T. Precursor exhausted T cells: key to successful immunotherapy? Nat. Rev. Immunol. 20, 128–136 (2020). (PMID: 3159153310.1038/s41577-019-0223-7)
      Huang, Q. et al. The primordial differentiation of tumor-specific memory CD8 + T cells as bona fide responders to PD-1/PD-L1 blockade in draining lymph nodes. Cell 185, 4049–4066.e25 (2022). This study describes molecularly distinct lymph node-residing memory-like CD8 + T cells in preclinical cancer models and patients with hepatocellular carcinoma that serve as upstream precursors of T PEX cells and whose activation in lymph nodes is required for efficient responses to checkpoint blockade therapy in mice. (PMID: 3620862310.1016/j.cell.2022.09.020)
      Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013.e20 (2018). (PMID: 30388456664198410.1016/j.cell.2018.10.038)
      Connolly, K. A. et al. A reservoir of stem-like CD8 + T cells in the tumor-draining lymph node preserves the ongoing antitumor immune response. Sci. Immunol. 6, eabg7836 (2021). (PMID: 34597124859391010.1126/sciimmunol.abg7836)
      Schenkel, J. M. et al. Conventional type I dendritic cells maintain a reservoir of proliferative tumor-antigen specific TCF-1 + CD8 + T cells in tumor-draining lymph nodes. Immunity 54, 2338–2353.e6 (2021). (PMID: 34534439860415510.1016/j.immuni.2021.08.026)
      van der Leun, A. M., Thommen, D. S. & Schumacher, T. N. CD8 + T cell states in human cancer: insights from single-cell analysis. Nat. Rev. Cancer 20, 218–232 (2020). (PMID: 32024970711598210.1038/s41568-019-0235-4)
      Mair, F. et al. Extricating human tumour immune alterations from tissue inflammation. Nature 605, 728–735 (2022). (PMID: 35545675913277210.1038/s41586-022-04718-w)
      Simoni, Y. et al. Bystander CD8 + T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018). (PMID: 2976972210.1038/s41586-018-0130-2)
      Scheper, W. et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat. Med. 25, 89–94 (2019). (PMID: 3051025010.1038/s41591-018-0266-5)
      Oliveira, G. et al. Phenotype, specificity and avidity of antitumour CD8 + T cells in melanoma. Nature 596, 119–125 (2021). This study provides the first comprehensive analysis of tumour-reactive CD8 + T cell differentiation states in human melanoma samples, confirming a strong bias of tumour-reactive CD8 + T cells towards differentiation states along the exhaustion spectrum. (PMID: 34290406918797410.1038/s41586-021-03704-y)
      Rosato, P. C. et al. Virus-specific memory T cells populate tumors and can be repurposed for tumor immunotherapy. Nat. Commun. 10, 567 (2019). (PMID: 30718505636213610.1038/s41467-019-08534-1)
      Caushi, J. X. et al. Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers. Nature 596, 126–132 (2021). (PMID: 34290408833855510.1038/s41586-021-03752-4)
      Cheng, Y. et al. Non-terminally exhausted tumor-resident memory HBV-specific T cell responses correlate with relapse-free survival in hepatocellular carcinoma. Immunity 54, 1825–1840.e7 (2021). (PMID: 3427094010.1016/j.immuni.2021.06.013)
      Eberhardt, C. S. et al. Functional HPV-specific PD-1 + stem-like CD8 T cells in head and neck cancer. Nature 597, 279–284 (2021). (PMID: 344712851020134210.1038/s41586-021-03862-z)
      Lowery, F. J. et al. Molecular signatures of antitumor neoantigen-reactive T cells from metastatic human cancers. Science 375, 877–884 (2022). (PMID: 35113651899669210.1126/science.abl5447)
      Zheng, C. et al. Transcriptomic profiles of neoantigen-reactive T cells in human gastrointestinal cancers. Cancer Cell 40, 410–423.e7 (2022). (PMID: 3541327210.1016/j.ccell.2022.03.005)
      Gros, A. et al. PD-1 identifies the patient-specific CD8 + tumor-reactive repertoire infiltrating human tumors. J. Clin. Invest. 124, 2246–2259 (2014). (PMID: 24667641400155510.1172/JCI73639)
      Thommen, D. S. et al. A transcriptionally and functionally distinct PD-1 + CD8 + T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat. Med. 24, 994–1004 (2018). (PMID: 29892065611038110.1038/s41591-018-0057-z)
      Li, H. et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell 176, 775–789.e18 (2019). (PMID: 3059545210.1016/j.cell.2018.11.043)
      Liu, B., Zhang, Y., Wang, D., Hu, X. & Zhang, Z. Single-cell meta-analyses reveal responses of tumor-reactive CXCL13 + T cells to immune-checkpoint blockade. Nat. Cancer 3, 1123–1136 (2022). (PMID: 3613813410.1038/s43018-022-00433-7)
      Ren, X. et al. Insights gained from single-cell analysis of immune cells in the tumor microenvironment. Annu. Rev. Immunol. 39, 583–609 (2021). (PMID: 3363701910.1146/annurev-immunol-110519-071134)
      Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571, 265–269 (2019). (PMID: 3120760510.1038/s41586-019-1326-9)
      Scott, A. C. et al. TOX is a critical regulator of tumour-specific T cell differentiation. Nature 571, 270–274 (2019). (PMID: 31207604769899210.1038/s41586-019-1324-y)
      Khan, O. et al. TOX transcriptionally and epigenetically programs CD8 + T cell exhaustion. Nature 571, 211–218 (2019). (PMID: 31207603671320210.1038/s41586-019-1325-x)
      Yao, C. et al. Single-cell RNA-seq reveals TOX as a key regulator of CD8 + T cell persistence in chronic infection. Nat. Immunol. 20, 890–901 (2019). Together with Alfei et al. (2019), Scott et al. (2019) and Khan et al. (2019), this study identifies the transcriptional regulator TOX as a master regulator of the T cell exhaustion trajectory in infection and cancer, and highlights that it is critically required for the maintenance and functional tuning of chronic T cell responses to persisting antigen. (PMID: 31209400658840910.1038/s41590-019-0403-4)
      Utzschneider, D. T. et al. Early precursor T cells establish and propagate T cell exhaustion in chronic infection. Nat. Immunol. 21, 1256–1266 (2020). (PMID: 3283961010.1038/s41590-020-0760-z)
      Beltra, J.-C. et al. Developmental relationships of four exhausted CD8 + T cell subsets reveals underlying transcriptional and epigenetic landscape control mechanisms. Immunity 52, 825–841.e8 (2020). (PMID: 32396847836076610.1016/j.immuni.2020.04.014)
      Chen, Z. et al. TCF-1-centered transcriptional network drives an effector versus exhausted CD8 T cell-fate decision. Immunity 51, 840–855.e5 (2019). (PMID: 31606264694382910.1016/j.immuni.2019.09.013)
      Giles, J. R. et al. Shared and distinct biological circuits in effector, memory and exhausted CD8 + T cells revealed by temporal single-cell transcriptomics and epigenetics. Nat. Immunol. 23, 1600–1613 (2022). (PMID: 362711481040835810.1038/s41590-022-01338-4)
      Im, S. J. et al. Defining CD8 + T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016). (PMID: 27501248529718310.1038/nature19330)
      Paley, M. A. et al. Progenitor and terminal subsets of CD8 + T cells cooperate to contain chronic viral infection. Science 338, 1220–1225 (2012). (PMID: 23197535365376910.1126/science.1229620)
      He, R. et al. Follicular CXCR5-expressing CD8 + T cells curtail chronic viral infection. Nature 537, 412–416 (2016). (PMID: 2750124510.1038/nature19317)
      Utzschneider, D. T. et al. T cell factor 1-expressing memory-like CD8 + T cells sustain the immune response to chronic viral infections. Immunity 45, 415–427 (2016). (PMID: 2753301610.1016/j.immuni.2016.07.021)
      Sen, D. R. et al. The epigenetic landscape of T cell exhaustion. Science 354, 1165–1169 (2016). (PMID: 27789799549758910.1126/science.aae0491)
      Leong, Y. A. et al. CXCR5 + follicular cytotoxic T cells control viral infection in B cell follicles. Nat. Immunol. 17, 1187–1196 (2016). Together with Im et al. (2016), He et al. (2016) and Utzschneider et al. (2020), this study molecularly defines T PEX cells and demonstrates their important role in replenishing CD8 + T cell responses during chronic viral infection and ICB therapy. (PMID: 2748733010.1038/ni.3543)
      Wu, T. et al. The TCF1–Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness. Sci. Immunol. 1, eaai8593 (2016). (PMID: 28018990517922810.1126/sciimmunol.aai8593)
      Kurtulus, S. et al. Checkpoint blockade immunotherapy induces dynamic changes in PD-1–CD8 + tumor-infiltrating T cells. Immunity 50, 181–194.e6 (2019). Together with Brummelman et al. (2018), Siddiqui et al. (2019), Miller et al. (2019), Jansen et al. (2019) and Sade-Feldman et al. (2018), this study identifies tumour-associated TCF1-dependent T PEX cells in mice and humans and demonstrates their critical role in sustaining CD8 + T cell responses to cancer, including cancer vaccination and checkpoint blockade therapy. (PMID: 30635236633611310.1016/j.immuni.2018.11.014)
      Pritykin, Y. et al. A unified atlas of CD8 T cell dysfunctional states in cancer and infection. Mol. Cell 81, 2477–2493.e10 (2021). (PMID: 33891860845450210.1016/j.molcel.2021.03.045)
      Hudson, W. H. et al. Proliferating transitory T cells with an effector-like transcriptional signature emerge from PD-1 + stem-like CD8 + T cells during chronic infection. Immunity 51, 1043–1058.e4 (2019). (PMID: 31810882692057110.1016/j.immuni.2019.11.002)
      Kasmani, M. Y. et al. Clonal lineage tracing reveals mechanisms skewing CD8 + T cell fate decisions in chronic infection. J. Exp. Med. 220, e20220679 (2023). (PMID: 3631504910.1084/jem.20220679)
      Daniel, B. et al. Divergent clonal differentiation trajectories of T cell exhaustion. Nat. Immunol. https://doi.org/10.1038/s41590-022-01337-5 (2022).
      Zander, R. et al. CD4 + T cell help is required for the formation of a cytolytic CD8 + T cell subset that protects against chronic infection and cancer. Immunity 51, 1028–1042.e4 (2019). (PMID: 31810883692932210.1016/j.immuni.2019.10.009)
      Di Pilato, M. et al. CXCR6 positions cytotoxic T cells to receive critical survival signals in the tumor microenvironment. Cell 184, 4512–4530.e22 (2021). (PMID: 34343496871945110.1016/j.cell.2021.07.015)
      Zheng, L. et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science 374, abe6474 (2021). This study provides the most comprehensive conglomeration of single-cell transcriptomic data of tumour-infiltrating CD4 + and CD8 + T cells across 21 cancer types, emphasizing the impact of patient, tumour type and TME-specific features on the composition of TITCs. (PMID: 3491449910.1126/science.abe6474)
      Kourtis, N. et al. A single-cell map of dynamic chromatin landscapes of immune cells in renal cell carcinoma. Nat. Cancer 3, 885–898 (2022). (PMID: 35668194932568210.1038/s43018-022-00391-0)
      Anadon, C. M. et al. Ovarian cancer immunogenicity is governed by a narrow subset of progenitor tissue-resident memory T cells. Cancer Cell 40, 545–557 (2022). (PMID: 35427494909622910.1016/j.ccell.2022.03.008)
      Gueguen, P. et al. Contribution of resident and circulating precursors to tumor-infiltrating CD8 + T cell populations in lung cancer. Sci. Immunol. 6, eabd5778 (2021). (PMID: 3351464110.1126/sciimmunol.abd5778)
      Cui, C. et al. Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses. Cell 184, 6101–6118.e13 (2021). (PMID: 34852236867135510.1016/j.cell.2021.11.007)
      Hua, Y. et al. Cancer immunotherapies transition endothelial cells into HEVs that generate TCF1 + T lymphocyte niches through a feed-forward loop. Cancer Cell 40, 1600–1618.e10 (2022). (PMID: 3642363510.1016/j.ccell.2022.11.002)
      Hoch, T. et al. Multiplexed imaging mass cytometry of the chemokine milieus in melanoma characterizes features of the response to immunotherapy. Sci. Immunol. 7, eabk1692 (2022). (PMID: 3536354010.1126/sciimmunol.abk1692)
      Magen, A. et al. Intratumoral dendritic cell–CD4 + T helper cell niches enable CD8 + T cell differentiation following PD-1 blockade in hepatocellular carcinoma. Nat. Med. 29, 1389–1399 (2023). (PMID: 3732211610.1038/s41591-023-02345-0)
      Vignali, P. D. A. et al. Hypoxia drives CD39-dependent suppressor function in exhausted T cells to limit antitumor immunity. Nat. Immunol. 24, 267–279 (2023). (PMID: 3654395810.1038/s41590-022-01379-9)
      Tsui, C. et al. MYB orchestrates T cell exhaustion and response to checkpoint inhibition. Nature 609, 354–360 (2022). (PMID: 35978192945229910.1038/s41586-022-05105-1)
      Dähling, S. et al. Type 1 conventional dendritic cells maintain and guide the differentiation of precursors of exhausted T cells in distinct cellular niches. Immunity 55, 656–670.e8 (2022). (PMID: 3536639610.1016/j.immuni.2022.03.006)
      Im, S. J., Konieczny, B. T., Hudson, W. H., Masopust, D. & Ahmed, R. PD-1 + stemlike CD8 T cells are resident in lymphoid tissues during persistent LCMV infection. Proc. Natl Acad. Sci. USA 117, 4292–4299 (2020). (PMID: 32034098704914910.1073/pnas.1917298117)
      Gaglia, G. et al. Lymphocyte networks are dynamic cellular communities in the immunoregulatory landscape of lung adenocarcinoma. Cancer Cell 41, 871–886.e10 (2023). (PMID: 3705910510.1016/j.ccell.2023.03.015)
      Prokhnevska, N. et al. CD8 + T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor. Immunity 56, 107–124.e5 (2023). (PMID: 3658091810.1016/j.immuni.2022.12.002)
      Pai, J. A. et al. Lineage tracing reveals clonal progenitors and long-term persistence of tumor-specific T cells during immune checkpoint blockade. Cancer Cell 41, 776–790.e7 (2023). (PMID: 370015261056376710.1016/j.ccell.2023.03.009)
      Li, Z. et al. In vivo labeling reveals continuous trafficking of TCF-1 + T cells between tumor and lymphoid tissue. J. Exp. Med. 219, e20210749 (2022). (PMID: 35472220904829110.1084/jem.20210749)
      Yost, K. E. et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat. Med. 25, 1251–1259 (2019). (PMID: 31359002668925510.1038/s41591-019-0522-3)
      Ma, C. et al. TGF-β promotes stem-like T cells via enforcing their lymphoid tissue retention. J. Exp. Med. 219, e20211538 (2022). (PMID: 35980385939340810.1084/jem.20211538)
      Chow, M. T. et al. Intratumoral activity of the CXCR3 chemokine system is required for the efficacy of anti-PD-1 therapy. Immunity 50, 1498–1512.e5 (2019). (PMID: 31097342652736210.1016/j.immuni.2019.04.010)
      Fridman, W. H. et al. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nat. Rev. Clin. Oncol. 19, 441–457 (2022). (PMID: 3536579610.1038/s41571-022-00619-z)
      Kersten, K. et al. Spatiotemporal co-dependency between macrophages and exhausted CD8 + T cells in cancer. Cancer Cell 40, 624–638.e9 (2022). (PMID: 35623342919796210.1016/j.ccell.2022.05.004)
      Nixon, B. G. et al. Tumor-associated macrophages expressing the transcription factor IRF8 promote T cell exhaustion in cancer. Immunity 55, 2044–2058.e5 (2022). (PMID: 3628872410.1016/j.immuni.2022.10.002)
      Burger, M. L. et al. Antigen dominance hierarchies shape TCF1 + progenitor CD8 T cell phenotypes in tumors. Cell 184, 4996–5014.e26 (2021). (PMID: 34534464852263010.1016/j.cell.2021.08.020)
      Utzschneider, D. T. et al. High antigen levels induce an exhausted phenotype in a chronic infection without impairing T cell expansion and survival. J. Exp. Med. 213, 1819–1834 (2016). (PMID: 27455951499507310.1084/jem.20150598)
      Shakiba, M. et al. TCR signal strength defines distinct mechanisms of T cell dysfunction and cancer evasion. J. Exp. Med. 219, e20201966 (2022). (PMID: 3493587410.1084/jem.20201966)
      Snell, L. M. et al. CD8 + T cell priming in established chronic viral infection preferentially directs differentiation of memory-like cells for sustained immunity. Immunity 49, 678–694.e5 (2018). (PMID: 30314757806091710.1016/j.immuni.2018.08.002)
      Ghorani, E. et al. The T cell differentiation landscape is shaped by tumour mutations in lung cancer. Nat. Cancer 1, 546–561 (2020). (PMID: 32803172711593110.1038/s43018-020-0066-y)
      Odorizzi, P. M., Pauken, K. E., Paley, M. A., Sharpe, A. & Wherry, E. J. Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8 + T cells. J. Exp. Med. 212, 1125–1137 (2015). (PMID: 26034050449341710.1084/jem.20142237)
      Hanna, B. S. et al. Interleukin-10 receptor signaling promotes the maintenance of a PD-1 int TCF-1 + CD8 + T cell population that sustains anti-tumor immunity. Immunity 54, 2825–2841.e10 (2021). (PMID: 3487922110.1016/j.immuni.2021.11.004)
      Gabriel, S. S. et al. Transforming growth factor-β-regulated mTOR activity preserves cellular metabolism to maintain long-term T cell responses in chronic infection. Immunity 54, 1698–1714.e5 (2021). (PMID: 3423315410.1016/j.immuni.2021.06.007)
      Hu, Y. et al. TGF-β regulates the stem-like state of PD-1 + TCF-1 + virus-specific CD8 T cells during chronic infection. J. Exp. Med. 219, e20211574 (2022). (PMID: 35980386939340910.1084/jem.20211574)
      Marx, A.-F. et al. The alarmin interleukin-33 promotes the expansion and preserves the stemness of Tcf-1 + CD8 + T cells in chronic viral infection. Immunity 56, 813–828.e10 (2023). (PMID: 3680976310.1016/j.immuni.2023.01.029)
      Yu, Y.-R. et al. Disturbed mitochondrial dynamics in CD8 + TILs reinforce T cell exhaustion. Nat. Immunol. 21, 1540–1551 (2020). (PMID: 3302066010.1038/s41590-020-0793-3)
      Scharping, N. E. et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat. Immunol. 22, 205–215 (2021). (PMID: 33398183797109010.1038/s41590-020-00834-9)
      Vardhana, S. A. et al. Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen. Nat. Immunol. 21, 1022–1033 (2020). (PMID: 32661364744274910.1038/s41590-020-0725-2)
      Vodnala, S. K. et al. T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science 363, eaau0135 (2019). (PMID: 30923193819436910.1126/science.aau0135)
      Beltra, J.-C. et al. IL2Rβ-dependent signals drive terminal exhaustion and suppress memory development during chronic viral infection. Proc. Natl Acad. Sci. USA 113, E5444–E5453 (2016). (PMID: 27573835502741610.1073/pnas.1604256113)
      Lukhele, S. et al. The transcription factor IRF2 drives interferon-mediated CD8 + T cell exhaustion to restrict anti-tumor immunity. Immunity 55, 2369–2385.e10 (2022). (PMID: 3637071210.1016/j.immuni.2022.10.020)
      Acharya, N. et al. Endogenous glucocorticoid signaling regulates CD8 + T cell differentiation and development of dysfunction in the tumor microenvironment. Immunity 53, 658–671.e6 (2020). (PMID: 32937153768280510.1016/j.immuni.2020.08.005)
      Staron, M. M. et al. The transcription factor FoxO1 sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8 + T cells during chronic infection. Immunity 41, 802–814 (2014). (PMID: 25464856427083010.1016/j.immuni.2014.10.013)
      Chen, Z. et al. In vivo CD8 + T cell CRISPR screening reveals control by Fli1 in infection and cancer. Cell 184, 1262–1280.e22 (2021). (PMID: 33636129805435110.1016/j.cell.2021.02.019)
      Yao, C. et al. BACH2 enforces the transcriptional and epigenetic programs of stem-like CD8 + T cells. Nat. Immunol. 22, 370–380 (2021). (PMID: 33574619790695610.1038/s41590-021-00868-7)
      Seo, H. et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8 + T cell exhaustion. Proc. Natl Acad. Sci. USA 116, 12410–12415 (2019). (PMID: 31152140658975810.1073/pnas.1905675116)
      Jadhav, R. R. et al. Epigenetic signature of PD-1 + TCF1 + CD8 T cells that act as resource cells during chronic viral infection and respond to PD-1 blockade. Proc. Natl Acad. Sci. USA 116, 14113–14118 (2019). (PMID: 31227606662883210.1073/pnas.1903520116)
      Chen, Y. et al. BATF regulates progenitor to cytolytic effector CD8 + T cell transition during chronic viral infection. Nat. Immunol. 22, 996–1007 (2021). (PMID: 34282329925898710.1038/s41590-021-00965-7)
      Man, K. et al. Transcription factor IRF4 promotes CD8 + T cell exhaustion and limits the development of memory-like T cells during chronic infection. Immunity 47, 1129–1141.e5 (2017). (PMID: 2924644310.1016/j.immuni.2017.11.021)
      McLane, L. M. et al. Role of nuclear localization in the regulation and function of T-bet and Eomes in exhausted CD8 T cells. Cell Rep. 35, 109120 (2021). (PMID: 33979613819546110.1016/j.celrep.2021.109120)
      Shin, H. et al. A role for the transcriptional repressor Blimp-1 in CD8 + T cell exhaustion during chronic viral infection. Immunity 31, 309–320 (2009). (PMID: 19664943274725710.1016/j.immuni.2009.06.019)
      Xin, G. et al. A critical role of IL-21-induced BATF in sustaining CD8-T-cell-mediated chronic viral control. Cell Rep. 13, 1118–1124 (2015). (PMID: 26527008485943210.1016/j.celrep.2015.09.069)
      Wagle, M. V. et al. Antigen-driven EGR2 expression is required for exhausted CD8 + T cell stability and maintenance. Nat. Commun. 12, 2782 (2021). (PMID: 33986293811942010.1038/s41467-021-23044-9)
      Doedens, A. L. et al. Hypoxia-inducible factors enhance the effector responses of CD8 + T cells to persistent antigen. Nat. Immunol. 14, 1173–1182 (2013). (PMID: 24076634397796510.1038/ni.2714)
      Liikanen, I. et al. Hypoxia-inducible factor activity promotes antitumor effector function and tissue residency by CD8 + T cells. J. Clin. Invest. 131, e143729 (2021). (PMID: 33792560801189610.1172/JCI143729)
      Ghoneim, H. E. et al. De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell 170, 142–157.e19 (2017). (PMID: 28648661556878410.1016/j.cell.2017.06.007)
      Belk, J. A. et al. Genome-wide CRISPR screens of T cell exhaustion identify chromatin remodeling factors that limit T cell persistence. Cancer Cell 40, 768–786.e7 (2022). (PMID: 35750052994953210.1016/j.ccell.2022.06.001)
      Collier, J. L., Weiss, S. A., Pauken, K. E., Sen, D. R. & Sharpe, A. H. Not-so-opposite ends of the spectrum: CD8 + T cell dysfunction across chronic infection, cancer and autoimmunity. Nat. Immunol. 22, 809–819 (2021). (PMID: 34140679919722810.1038/s41590-021-00949-7)
      Abdel-Hakeem, M. S. et al. Epigenetic scarring of exhausted T cells hinders memory differentiation upon eliminating chronic antigenic stimulation. Nat. Immunol. 22, 1008–1019 (2021). (PMID: 34312545832397110.1038/s41590-021-00975-5)
      Utzschneider, D. T. et al. T cells maintain an exhausted phenotype after antigen withdrawal and population reexpansion. Nat. Immunol. 14, 603–610 (2013). (PMID: 2364450610.1038/ni.2606)
      Galletti, G. et al. Two subsets of stem-like CD8 + memory T cell progenitors with distinct fate commitments in humans. Nat. Immunol. 21, 1552–1562 (2020). (PMID: 33046887761079010.1038/s41590-020-0791-5)
      Wieland, D. et al. TCF1 + hepatitis C virus-specific CD8 + T cells are maintained after cessation of chronic antigen stimulation. Nat. Commun. 8, 15050 (2017). (PMID: 28466857541862310.1038/ncomms15050)
      Hensel, N. et al. Memory-like HCV-specific CD8 + T cells retain a molecular scar after cure of chronic HCV infection. Nat. Immunol. 22, 229–239 (2021). (PMID: 3339817910.1038/s41590-020-00817-w)
      Tonnerre, P. et al. Differentiation of exhausted CD8 + T cells after termination of chronic antigen stimulation stops short of achieving functional T cell memory. Nat. Immunol. 22, 1030–1041 (2021). (PMID: 34312544832398010.1038/s41590-021-00982-6)
      Yates, K. B. et al. Epigenetic scars of CD8 + T cell exhaustion persist after cure of chronic infection in humans. Nat. Immunol. 22, 1020–1029 (2021).Together with Abdel-Hakeem et al. (2021), Hensel et al. (2021) and Tonnerre et al. (2021), this study shows that exhausted CD8 + T cells responding to chronic viral infection in humans do not convert into conventional memory T cells after the infection is cured, an observation that is described as epigenetic scarring of exhausted T cells. (PMID: 34312547860053910.1038/s41590-021-00979-1)
      Kanev, K. et al. Proliferation-competent Tcf1 + CD8 T cells in dysfunctional populations are CD4 T cell help independent. Proc. Natl Acad. Sci. USA 116, 20070–20076 (2019). (PMID: 31530725677817610.1073/pnas.1902701116)
      Castellino, F. & Germain, R. N. Cooperation between CD4 + and CD8 + T cells: when, where, and how. Annu. Rev. Immunol. 24, 519–540 (2006). (PMID: 1655125810.1146/annurev.immunol.23.021704.115825)
      Malik, B. T. et al. Resident memory T cells in the skin mediate durable immunity to melanoma. Sci. Immunol. 2, eaam6346 (2017). (PMID: 28738020552533510.1126/sciimmunol.aam6346)
      Molodtsov, A. K. et al. Resident memory CD8 + T cells in regional lymph nodes mediate immunity to metastatic melanoma. Immunity 54, 2117–2132.e7 (2021). (PMID: 34525340901519310.1016/j.immuni.2021.08.019)
      Alicke, B. et al. Immunization associated with primary tumor growth leads to rejection of commonly used syngeneic tumors upon tumor rechallenge. J. Immunother. Cancer 8, e000532 (2020). (PMID: 32675310736849910.1136/jitc-2020-000532)
      Jackaman, C. & Nelson, D. J. Intratumoral interleukin-2/agonist CD40 antibody drives CD4 + -independent resolution of treated-tumors and CD4 + -dependent systemic and memory responses. Cancer Immunol. Immunother. 61, 549–560 (2012). (PMID: 2200224110.1007/s00262-011-1120-5)
      Ferris, S. T. et al. cDC1 prime and are licensed by CD4 + T cells to induce anti-tumour immunity. Nature 584, 624–629 (2020). (PMID: 32788723746975510.1038/s41586-020-2611-3)
      Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996). (PMID: 859693610.1126/science.271.5256.1734)
      Han, J. et al. Resident and circulating memory T cells persist for years in melanoma patients with durable responses to immunotherapy. Nat. Cancer 2, 300–311 (2021). Using single-cell RNA sequencing, this study demonstrates the persistence of circulating and resident memory tumour-associated T cell clones (up to 9 years later) in patients with metastatic melanoma with durable responses to checkpoint therapy. (PMID: 34179824822373110.1038/s43018-021-00180-1)
      Enamorado, M. et al. Enhanced anti-tumour immunity requires the interplay between resident and circulating memory CD8 + T cells. Nat. Commun. 8, 16073 (2017). (PMID: 28714465552005110.1038/ncomms16073)
      Park, S. L. et al. Tissue-resident memory CD8 + T cells promote melanoma-immune equilibrium in skin. Nature 565, 366–371 (2019). (PMID: 3059854810.1038/s41586-018-0812-9)
      Schenkel, J. M., Fraser, K. A., Vezys, V. & Masopust, D. Sensing and alarm function of resident memory CD8 + T cells. Nat. Immunol. 14, 509–513 (2013). (PMID: 23542740363143210.1038/ni.2568)
      Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 10, 524–530 (2009). (PMID: 1930539510.1038/ni.1718)
      Masopust, D. et al. Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med. 207, 553–564 (2010). (PMID: 20156972283915110.1084/jem.20090858)
      Jiang, X. et al. Skin infection generates non-migratory memory CD8 + TRM cells providing global skin immunity. Nature 483, 227–231 (2012). (PMID: 22388819343766310.1038/nature10851)
      Mackay, L. K. et al. Long-lived epithelial immunity by tissue-resident memory T (T RM ) cells in the absence of persisting local antigen presentation. Proc. Natl Acad. Sci. USA 109, 7037–7042 (2012). (PMID: 22509047334496010.1073/pnas.1202288109)
      Gebhardt, T., Palendira, U., Tscharke, D. C. & Bedoui, S. Tissue-resident memory T cells in tissue homeostasis, persistent infection, and cancer surveillance. Immunol. Rev. 283, 54–76 (2018). (PMID: 2966457110.1111/imr.12650)
      Masopust, D. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001). (PMID: 1126453810.1126/science.1058867)
      Lian, C. G. et al. Biomarker evaluation of face transplant rejection: association of donor T cells with target cell injury. Mod. Pathol. 27, 788–799 (2014). (PMID: 2443489810.1038/modpathol.2013.249)
      Bartolomé-Casado, R. et al. Resident memory CD8 T cells persist for years in human small intestine. J. Exp. Med. 216, 2412–2426 (2019). (PMID: 31337737678100410.1084/jem.20190414)
      Snyder, M. E. et al. Generation and persistence of human tissue-resident memory T cells in lung transplantation. Sci. Immunol. 4, eaav5581 (2019). (PMID: 30850393643535610.1126/sciimmunol.aav5581)
      Park, S. L., Gebhardt, T. & Mackay, L. K. Tissue-resident memory T cells in cancer immunosurveillance. Trends Immunol. 40, 735–747 (2019). (PMID: 3125550510.1016/j.it.2019.06.002)
      Amsen, D., van Gisbergen, K. P. J. M., Hombrink, P. & van Lier, R. A. W. Tissue-resident memory T cells at the center of immunity to solid tumors. Nat. Immunol. 19, 538–546 (2018). (PMID: 2977721910.1038/s41590-018-0114-2)
      Edwards, J. et al. CD103 + tumor-resident CD8 + T cells are associated with improved survival in immunotherapy-naïve melanoma patients and expand significantly during anti–PD-1 treatment. Clin. Cancer Res. 24, 3036–3045 (2018). (PMID: 2959941110.1158/1078-0432.CCR-17-2257)
      Webb, J. R., Milne, K., Watson, P., deLeeuw, R. J. & Nelson, B. H. Tumor-infiltrating lymphocytes expressing the tissue resident memory marker CD103 are associated with increased survival in high-grade serous ovarian cancer. Clin. Cancer Res. 20, 434–444 (2014). (PMID: 2419097810.1158/1078-0432.CCR-13-1877)
      Wang, Z.-Q. et al. CD103 and intratumoral immune response in breast cancer. Clin. Cancer Res. 22, 6290–6297 (2016). (PMID: 2726784910.1158/1078-0432.CCR-16-0732)
      Savas, P. et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat. Med. 24, 986–993 (2018). (PMID: 2994209210.1038/s41591-018-0078-7)
      Banchereau, R. et al. Intratumoral CD103 + CD8 + T cells predict response to PD-L1 blockade. J. Immunother. Cancer 9, e002231 (2021). (PMID: 33827905803225410.1136/jitc-2020-002231)
      Workel, H. H. et al. CD103 defines intraepithelial CD8 + PD1 + tumour-infiltrating lymphocytes of prognostic significance in endometrial adenocarcinoma. Eur. J. Cancer 60, 1–11 (2016). (PMID: 2703884210.1016/j.ejca.2016.02.026)
      Djenidi, F. et al. CD8 + CD103 + tumor-infiltrating lymphocytes are tumor-specific tissue-resident memory T cells and a prognostic factor for survival in lung cancer patients. J. Immunol. 194, 3475–3486 (2015). (PMID: 2572511110.4049/jimmunol.1402711)
      Nizard, M. et al. Induction of resident memory T cells enhances the efficacy of cancer vaccine. Nat. Commun. 8, 15221 (2017). (PMID: 28537262545806810.1038/ncomms15221)
      Milner, J. J. et al. Runx3 programs CD8 + T cell residency in non-lymphoid tissues and tumours. Nature 552, 253–257 (2017). (PMID: 29211713574796410.1038/nature24993)
      Zhu, J. et al. Immune surveillance by CD8αα + skin-resident T cells in human herpes virus infection. Nature 497, 494–497 (2013). (PMID: 23657257366392510.1038/nature12110)
      Davé, V. et al. Recurrent infection transiently expands human tissue T cells while maintaining long-term homeostasis. J. Exp. Med. 220, e20210692 (2023). (PMID: 373144811026759310.1084/jem.20210692)
      MacKie, R. M., Reid, R. & Junor, B. Fatal melanoma transferred in a donated kidney 16 years after melanoma surgery. N. Engl. J. Med. 348, 567–568 (2003). (PMID: 1257127110.1056/NEJM200302063480620)
      Koebel, C. M. et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450, 903–907 (2007). (PMID: 1802608910.1038/nature06309)
      Eyles, J. et al. Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J. Clin. Invest. 120, 2030–2039 (2010). (PMID: 20501944287795510.1172/JCI42002)
      Hochheiser, K. et al. Accumulation of CD103 + CD8 + T cells in a cutaneous melanoma micrometastasis. Clin. Transl. Immunol. 8, e1100 (2019). (PMID: 10.1002/cti2.1100)
      Landsberg, J. et al. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature 490, 412–416 (2012). (PMID: 2305175210.1038/nature11538)
      Weber, E. W. et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science 372, eaba1786 (2021). This study shows that transient disruption of CAR T cell signalling can mitigate exhaustion and promote memory-like features, highlighting a level of flexibility in epigenetic exhaustion that could be harnessed therapeutically to prolong antitumour responses. (PMID: 33795428804910310.1126/science.aba1786)
      Mackay, L. K. et al. Maintenance of T cell function in the face of chronic antigen stimulation and repeated reactivation for a latent virus infection. J. Immunol. 188, 2173–2178 (2012). (PMID: 2227165110.4049/jimmunol.1102719)
      Park, S. L. et al. Local proliferation maintains a stable pool of tissue-resident memory T cells after antiviral recall responses. Nat. Immunol. 19, 183–191 (2018). (PMID: 2931169510.1038/s41590-017-0027-5)
      Quinn, E., Hawkins, N., Yip, Y. L., Suter, C. & Ward, R. CD103+ intraepithelial lymphocytes — a unique population in microsatellite unstable sporadic colorectal cancer. Eur. J. Cancer 39, 469–475 (2003). (PMID: 1275137710.1016/S0959-8049(02)00633-0)
      Webb, J. R., Milne, K. & Nelson, B. H. PD-1 and CD103 are widely coexpressed on prognostically favorable intraepithelial CD8 T cells in human ovarian cancer. Cancer Immunol. Res. 3, 926–935 (2015). (PMID: 2595711710.1158/2326-6066.CIR-14-0239)
      Mackay, L. K. et al. The developmental pathway for CD103 + CD8 + tissue-resident memory T cells of skin. Nat. Immunol. 14, 1294–1301 (2013). (PMID: 2416277610.1038/ni.2744)
      Mackay, L. K. et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 352, 459–463 (2016). (PMID: 2710248410.1126/science.aad2035)
      Crowl, J. T. et al. Tissue-resident memory CD8 + T cells possess unique transcriptional, epigenetic and functional adaptations to different tissue environments. Nat. Immunol. 23, 1121–1131 (2022). (PMID: 357610841004153810.1038/s41590-022-01229-8)
      Pan, Y. et al. Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature 543, 252–256 (2017). (PMID: 28219080550905110.1038/nature21379)
      Casey, K. A. et al. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. J. Immunol. 188, 4866–4875 (2012). (PMID: 2250464410.4049/jimmunol.1200402)
      Zhang, N. & Bevan, M. J. Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention. Immunity 39, 687–696 (2013). (PMID: 24076049380570310.1016/j.immuni.2013.08.019)
      Christo, S. N. et al. Discrete tissue microenvironments instruct diversity in resident memory T cell function and plasticity. Nat. Immunol. 22, 1140–1151 (2021). (PMID: 3442669110.1038/s41590-021-01004-1)
      Khan, T. N., Mooster, J. L., Kilgore, A. M., Osborn, J. F. & Nolz, J. C. Local antigen in nonlymphoid tissue promotes resident memory CD8 + T cell formation during viral infection. J. Exp. Med. 213, 951–966 (2016). (PMID: 27217536488636410.1084/jem.20151855)
      Muschaweckh, A. et al. Antigen-dependent competition shapes the local repertoire of tissue-resident memory CD8 + T cells. J. Exp. Med. 213, 3075–3086 (2016). (PMID: 27899444515494410.1084/jem.20160888)
      Ganesan, A.-P. et al. Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. Nat. Immunol. 18, 940–950 (2017). (PMID: 28628092603691010.1038/ni.3775)
      Clarke, J. et al. Single-cell transcriptomic analysis of tissue-resident memory T cells in human lung cancer. J. Exp. Med. 216, 2128–2149 (2019). (PMID: 31227543671942210.1084/jem.20190249)
      Luoma, A. M. et al. Tissue-resident memory and circulating T cells are early responders to pre-surgical cancer immunotherapy. Cell 185, 2918–2935.e29 (2022). (PMID: 35803260950868210.1016/j.cell.2022.06.018)
      Gavil, N. V. et al. Chronic antigen in solid tumors drives a distinct program of T cell residence. Sci. Immunol. 84, eadd5976 (2023). (PMID: 10.1126/sciimmunol.add5976)
      Wu, J. et al. T cell factor 1 suppresses CD103 + lung tissue-resident memory T cell development. Cell Rep. 31, 107484 (2020). (PMID: 3226810610.1016/j.celrep.2020.03.048)
      Kurd, N. S. et al. Early precursors and molecular determinants of tissue-resident memory CD8 + T lymphocytes revealed by single-cell RNA sequencing. Sci. Immunol. 5, eaaz6894 (2020). (PMID: 32414833734173010.1126/sciimmunol.aaz6894)
      Li, C. et al. The transcription factor Bhlhe40 programs mitochondrial regulation of resident CD8 + T cell fitness and functionality. Immunity 51, 491–507.e7 (2019). (PMID: 31533057690370410.1016/j.immuni.2019.08.013)
      Wijeyesinghe, S. et al. Expansible residence decentralizes immune homeostasis. Nature 592, 457–462 (2021). (PMID: 3373193410.1038/s41586-021-03351-3)
      Fonseca, R. et al. Developmental plasticity allows outside-in immune responses by resident memory T cells. Nat. Immunol. 21, 412–421 (2020). (PMID: 32066954709628510.1038/s41590-020-0607-7)
      Behr, F. M. et al. Tissue-resident memory CD8 + T cells shape local and systemic secondary T cell responses. Nat. Immunol. 21, 1070–1081 (2020). (PMID: 3266136110.1038/s41590-020-0723-4)
      Hartana, C. A. et al. Tissue-resident memory T cells are epigenetically cytotoxic with signs of exhaustion in human urinary bladder cancer. Clin. Exp. Immunol. 194, 39–53 (2018). (PMID: 30009527615681810.1111/cei.13183)
      Guo, X. et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat. Med. 24, 978–985 (2018). (PMID: 2994209410.1038/s41591-018-0045-3)
      Zhang, L. et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature 564, 268–272 (2018). (PMID: 3047938210.1038/s41586-018-0694-x)
      Milner, J. J. et al. Heterogenous populations of tissue-resident CD8 + T cells are generated in response to infection and malignancy. Immunity 52, 808–824.e7 (2020). (PMID: 32433949778461210.1016/j.immuni.2020.04.007)
      Braun, D. A. et al. Progressive immune dysfunction with advancing disease stage in renal cell carcinoma. Cancer Cell 39, 632–648.e8 (2021). (PMID: 33711273813887210.1016/j.ccell.2021.02.013)
      Gamradt, P. et al. Inhibitory checkpoint receptors control CD8 + resident memory T cells to prevent skin allergy. J. Allergy Clin. Immunol. 143, 2147–2157.e9 (2019). (PMID: 3065405110.1016/j.jaci.2018.11.048)
      Wang, Z. et al. PD-1 hi CD8 + resident memory T cells balance immunity and fibrotic sequelae. Sci. Immunol. 4, eaaw1217 (2019). (PMID: 31201259745886710.1126/sciimmunol.aaw1217)
      Jhunjhunwala, S., Hammer, C. & Delamarre, L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat. Rev. Cancer 21, 298–312 (2021). (PMID: 3375092210.1038/s41568-021-00339-z)
      Duhen, T. et al. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat. Commun. 9, 2724 (2018). Together with Simoni et al. (2018), this study reveals that co-expression of the T RM cell marker CD103 and the exhaustion marker CD39 identifies cancer-specific CD8 + T cells in several human tumour entities, and that there is an abundance of bystander CD8 + T cells with specificities to viral antigens among TITCs within the TME. (PMID: 30006565604564710.1038/s41467-018-05072-0)
      Canale, F. P. et al. CD39 expression defines cell exhaustion in tumor-infiltrating CD8 + T cells. Cancer Res. 78, 115–128 (2018). (PMID: 2906651410.1158/0008-5472.CAN-16-2684)
      Gupta, P. K. et al. CD39 expression identifies terminally exhausted CD8 + T cells. PLoS Pathog. 11, e1005177 (2015). (PMID: 26485519461899910.1371/journal.ppat.1005177)
      Tallón de Lara, P. et al. CD39 + PD-1 + CD8 + T cells mediate metastatic dormancy in breast cancer. Nat. Commun. 12, 769 (2021). (PMID: 33536445785921310.1038/s41467-021-21045-2)
      Braumüller, H. et al. T-helper-1-cell cytokines drive cancer into senescence. Nature 494, 361–365 (2013). (PMID: 2337695010.1038/nature11824)
      Menares, E. et al. Tissue-resident memory CD8 + T cells amplify anti-tumor immunity by triggering antigen spreading through dendritic cells. Nat. Commun. 10, 4401 (2019). (PMID: 31562311676501410.1038/s41467-019-12319-x)
      Floc’h, A. L. et al. α E β 7 integrin interaction with E-cadherin promotes antitumor CTL activity by triggering lytic granule polarization and exocytosis. J. Exp. Med. 204, 559–570 (2007). (PMID: 17325197213790710.1084/jem.20061524)
      Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018). (PMID: 29443960602824010.1038/nature25501)
      Tauriello, D. V. F. et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538–543 (2018). (PMID: 2944396410.1038/nature25492)
      Krishna, C. et al. Single-cell sequencing links multiregional immune landscapes and tissue-resident T cells in ccRCC to tumor topology and therapy efficacy. Cancer Cell 39, 662–677.e6 (2021). (PMID: 33861994826894710.1016/j.ccell.2021.03.007)
      Corgnac, S. et al. CD103 + CD8 + T RM cells accumulate in tumors of anti-PD-1-responder lung cancer patients and are tumor-reactive lymphocytes enriched with Tc17. Cell Rep. Med. 1, 100127 (2020). (PMID: 33205076765958910.1016/j.xcrm.2020.100127)
      Lee, Y. J. et al. CD39 + tissue-resident memory CD8 + T cells with a clonal overlap across compartments mediate antitumor immunity in breast cancer. Sci. Immunol. 7, eabn8390 (2022). (PMID: 3602644010.1126/sciimmunol.abn8390)
      Sasson, S. C. et al. Interferon-γ-producing CD8 + tissue resident memory T cells are a targetable hallmark of immune checkpoint inhibitor-colitis. Gastroenterology 161, 1229–1244.e9 (2021). (PMID: 3414751910.1053/j.gastro.2021.06.025)
      Luoma, A. M. et al. Molecular pathways of colon inflammation induced by cancer immunotherapy. Cell 182, 655–671.e22 (2020). (PMID: 32603654741571710.1016/j.cell.2020.06.001)
      Korman, A. J., Garrett-Thomson, S. C. & Lonberg, N. The foundations of immune checkpoint blockade and the ipilimumab approval decennial. Nat. Rev. Drug. Discov. 21, 509–528 (2022). (PMID: 3493791510.1038/s41573-021-00345-8)
      Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014). (PMID: 25428505424641810.1038/nature13954)
      Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015). (PMID: 26028255448113610.1056/NEJMoa1500596)
      Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24, 1550–1558 (2018). (PMID: 30127393648750210.1038/s41591-018-0136-1)
      Held, W., Siddiqui, I., Schaeuble, K. & Speiser, D. E. Intratumoral CD8 + T cells with stem cell-like properties: implications for cancer immunotherapy. Sci. Transl. Med. 11, eaay6863 (2019). (PMID: 3164545410.1126/scitranslmed.aay6863)
      Chu, Y. et al. Pan-cancer T cell atlas links a cellular stress response state to immunotherapy resistance. Nat. Med. 29, 1550–1562 (2023). (PMID: 3724830110.1038/s41591-023-02371-y)
      Liu, B. et al. Temporal single-cell tracing reveals clonal revival and expansion of precursor exhausted T cells during anti-PD-1 therapy in lung cancer. Nat. Cancer 3, 108–121 (2022). (PMID: 3512199110.1038/s43018-021-00292-8)
      Jaiswal, A. et al. An activation to memory differentiation trajectory of tumor-infiltrating lymphocytes informs metastatic melanoma outcomes. Cancer Cell 40, 524–544.e5 (2022). (PMID: 35537413912209910.1016/j.ccell.2022.04.005)
      Li, C. et al. A high OXPHOS CD8 T cell subset is predictive of immunotherapy resistance in melanoma patients. J. Exp. Med. 219, e20202084 (2022). (PMID: 3480723210.1084/jem.20202084)
      Voabil, P. et al. An ex vivo tumor fragment platform to dissect response to PD-1 blockade in cancer. Nat. Med. 27, 1250–1261 (2021). (PMID: 3423913410.1038/s41591-021-01398-3)
      Bassez, A. et al. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat. Med. 27, 820–832 (2021). (PMID: 3395879410.1038/s41591-021-01323-8)
      Li, K. et al. Multi-omic analyses of changes in the tumor microenvironment of pancreatic adenocarcinoma following neoadjuvant treatment with anti-PD-1 therapy. Cancer Cell 40, 1374–1391.e7 (2022). (PMID: 36306792966921210.1016/j.ccell.2022.10.001)
      Dammeijer, F. et al. The PD-1/PD-L1-checkpoint restrains T cell immunity in tumor-draining lymph nodes. Cancer Cell 38, 685–700.e8 (2020). (PMID: 3300725910.1016/j.ccell.2020.09.001)
      Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017). (PMID: 28187290539169210.1016/j.cell.2017.01.017)
      Schoenfeld, A. J. & Hellmann, M. D. Acquired resistance to immune checkpoint inhibitors. Cancer Cell 37, 443–455 (2020). (PMID: 32289269718207010.1016/j.ccell.2020.03.017)
      Spitzer, M. H. et al. Systemic immunity is required for effective cancer immunotherapy. Cell 168, 487–502.e15 (2017). (PMID: 28111070531282310.1016/j.cell.2016.12.022)
      Fransen, M. F. et al. Tumor-draining lymph nodes are pivotal in PD-1/PD-L1 checkpoint therapy. JCI Insight 3, e124507 (2018). (PMID: 30518694632802510.1172/jci.insight.124507)
      House, I. G. et al. Macrophage-derived CXCL9 and CXCL10 are required for antitumor immune responses following immune checkpoint blockade. Clin. Cancer Res. 26, 487–504 (2020). (PMID: 3163609810.1158/1078-0432.CCR-19-1868)
      Huang, A. C. et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545, 60–65 (2017). (PMID: 28397821555436710.1038/nature22079)
      Wu, T. D. et al. Peripheral T cell expansion predicts tumour infiltration and clinical response. Nature 579, 274–278 (2020). (PMID: 3210318110.1038/s41586-020-2056-8)
      Rahim, M. K. et al. Dynamic CD8 + T cell responses to cancer immunotherapy in human regional lymph nodes are disrupted in metastatic lymph nodes. Cell 186, 1127–1143.e18 (2023). (PMID: 3693124310.1016/j.cell.2023.02.021)
      Philipp, N. et al. T-cell exhaustion induced by continuous bispecific molecule exposure is ameliorated by treatment-free intervals. Blood 140, 1104–1118 (2022). (PMID: 3587800110.1182/blood.2022015956)
      Lelliott, E. J. et al. CDK4/6 inhibition promotes antitumor immunity through the induction of T-cell memory. Cancer Discov. 11, 2582–2601 (2021). (PMID: 3399034410.1158/2159-8290.CD-20-1554)
      Ebert, P. J. R. et al. MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity 44, 609–621 (2016). (PMID: 2694420110.1016/j.immuni.2016.01.024)
      Verma, V. et al. MEK inhibition reprograms CD8 + T lymphocytes into memory stem cells with potent antitumor effects. Nat. Immunol. 22, 53–66 (2021). (PMID: 3323033010.1038/s41590-020-00818-9)
      LaFleur, M. W. et al. PTPN2 regulates the generation of exhausted CD8 + T cell subpopulations and restrains tumor immunity. Nat. Immunol. 20, 1335–1347 (2019). (PMID: 31527834675430610.1038/s41590-019-0480-4)
      Pelly, V. S. et al. Anti-inflammatory drugs remodel the tumor immune environment to enhance immune checkpoint blockade efficacy. Cancer Discov. 11, 2602–2619 (2021). (PMID: 34031121761176710.1158/2159-8290.CD-20-1815)
      Liu, C. et al. Neuropilin-1 is a T cell memory checkpoint limiting long-term antitumor immunity. Nat. Immunol. 21, 1010–1021 (2020). (PMID: 32661362744260010.1038/s41590-020-0733-2)
      Francis, D. M. et al. Blockade of immune checkpoints in lymph nodes through locoregional delivery augments cancer immunotherapy. Sci. Transl. Med. 12, eaay3575 (2020). (PMID: 32998971837770010.1126/scitranslmed.aay3575)
      Galon, J. & Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug. Discov. 18, 197–218 (2019). (PMID: 3061022610.1038/s41573-018-0007-y)
      Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017). (PMID: 2867878410.1038/nature23003)
      Rojas, L. A. et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 618, 144–150 (2023). (PMID: 371651961017117710.1038/s41586-023-06063-y)
      Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017). (PMID: 28678778557764410.1038/nature22991)
      Lin, M. J. et al. Cancer vaccines: the next immunotherapy frontier. Nat. Cancer 3, 911–926 (2022). (PMID: 3599930910.1038/s43018-022-00418-6)
      Baharom, F. et al. Intravenous nanoparticle vaccination generates stem-like TCF1 + neoantigen-specific CD8 + T cells. Nat. Immunol. 22, 41–52 (2021). (PMID: 3313991510.1038/s41590-020-00810-3)
      D’Alise, A. M. et al. Adenoviral-based vaccine promotes neoantigen-specific CD8 + T cell stemness and tumor rejection. Sci. Transl. Med. 14, eabo7604 (2022). (PMID: 35947675984451710.1126/scitranslmed.abo7604)
      Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014). (PMID: 25317870426753110.1056/NEJMoa1407222)
      Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011). (PMID: 21830940338727710.1056/NEJMoa1103849)
      Chan, J. D. et al. Cellular networks controlling T cell persistence in adoptive cell therapy. Nat. Rev. Immunol. 21, 769–784 (2021). (PMID: 3387987310.1038/s41577-021-00539-6)
      Louis, C. U. et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 118, 6050–6056 (2011). (PMID: 21984804323466410.1182/blood-2011-05-354449)
      Xu, Y. et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood 123, 3750–3759 (2014). (PMID: 24782509405592210.1182/blood-2014-01-552174)
      Biasco, L. et al. Clonal expansion of T memory stem cells determines early anti-leukemic responses and long-term CAR T cell persistence in patients. Nat. Cancer 2, 629–642 (2021). (PMID: 34345830761144810.1038/s43018-021-00207-7)
      Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24, 563–571 (2018). (PMID: 29713085611761310.1038/s41591-018-0010-1)
      Chen, G. M. et al. Integrative bulk and single-cell profiling of premanufacture T-cell populations reveals factors mediating long-term persistence of CAR T-cell therapy. Cancer Discov. 11, 2186–2199 (2021). (PMID: 33820778841903010.1158/2159-8290.CD-20-1677)
      Rosenberg, S. A. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res. 17, 4550–4557 (2011). (PMID: 21498393313148710.1158/1078-0432.CCR-11-0116)
      Krishna, S. et al. Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. Science 370, 1328–1334 (2020). (PMID: 33303615888357910.1126/science.abb9847)
      Mo, F. et al. An engineered IL-2 partial agonist promotes CD8 + T cell stemness. Nature 597, 544–548 (2021). (PMID: 34526724917291710.1038/s41586-021-03861-0)
      Ghorashian, S. et al. Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nat. Med. 25, 1408–1414 (2019). (PMID: 3147790610.1038/s41591-019-0549-5)
      Kawalekar, O. U. et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44, 380–390 (2016). (PMID: 2688586010.1016/j.immuni.2016.01.021)
      Long, A. H. et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat. Med. 21, 581–590 (2015). (PMID: 25939063445818410.1038/nm.3838)
      Kagoya, Y. et al. A novel chimeric antigen receptor containing a JAK–STAT signaling domain mediates superior antitumor effects. Nat. Med. 24, 352–359 (2018). (PMID: 29400710583999210.1038/nm.4478)
      Guedan, S. et al. Single residue in CD28-costimulated CAR-T cells limits long-term persistence and antitumor durability. J. Clin. Invest. 130, 3087–3097 (2020). (PMID: 32069268726001710.1172/JCI133215)
      Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017). (PMID: 28225754555861410.1038/nature21405)
      Lynn, R. C. et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature 576, 293–300 (2019). (PMID: 31802004694432910.1038/s41586-019-1805-z)
      Gautam, S. et al. The transcription factor c-Myb regulates CD8 + T cell stemness and antitumor immunity. Nat. Immunol. 20, 337–349 (2019). (PMID: 30778251648949910.1038/s41590-018-0311-z)
      Ji, Y. et al. Repression of the DNA-binding inhibitor Id3 by Blimp-1 limits the formation of memory CD8 + T cells. Nat. Immunol. 12, 1230–1237 (2011). (PMID: 22057288322677010.1038/ni.2153)
      Fraietta, J. A. et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 558, 307–312 (2018). (PMID: 29849141632024810.1038/s41586-018-0178-z)
      Guo, A. et al. cBAF complex components and MYC cooperate early in CD8 + T cell fate. Nature 607, 135–141 (2022). (PMID: 35732731962303610.1038/s41586-022-04849-0)
      Kalbasi, A. et al. Potentiating adoptive cell therapy using synthetic IL-9 receptors. Nature 607, 360–365 (2022). (PMID: 35676488928331310.1038/s41586-022-04801-2)
      Legut, M. et al. A genome-scale screen for synthetic drivers of T cell proliferation. Nature 603, 728–735 (2022). (PMID: 35296855990843710.1038/s41586-022-04494-7)
      Wei, J. et al. Targeting Regnase-1 programs long-lived effector T cells for cancer therapy. Nature 576, 471–476 (2019). (PMID: 31827283693759610.1038/s41586-019-1821-z)
      Behrens, G. et al. Disrupting Roquin-1 interaction with Regnase-1 induces autoimmunity and enhances antitumor responses. Nat. Immunol. 22, 1563–1576 (2021). (PMID: 34811541899634410.1038/s41590-021-01064-3)
      Melenhorst, J. J. et al. Decade-long leukaemia remissions with persistence of CD4 + CAR T cells. Nature 602, 503–509 (2022). (PMID: 35110735916691610.1038/s41586-021-04390-6)
      Baessler, A. et al. Tet2 coordinates with Foxo1 and Runx1 to balance T follicular helper cell and T helper 1 cell differentiation. Sci. Adv. 8, eabm4982 (2022). (PMID: 35704571920027710.1126/sciadv.abm4982)
      Scholler, N. et al. Tumor immune contexture is a determinant of anti-CD19 CAR T cell efficacy in large B cell lymphoma. Nat. Med. 28, 1872–1882 (2022). (PMID: 36038629949985610.1038/s41591-022-01916-x)
      Reinhard, K. et al. An RNA vaccine drives expansion and efficacy of claudin–CAR-T cells against solid tumors. Science 367, 446–453 (2020). (PMID: 3189666010.1126/science.aay5967)
      Seo, H. et al. BATF and IRF4 cooperate to counter exhaustion in tumor-infiltrating CAR T cells. Nat. Immunol. 22, 983–995 (2021). (PMID: 34282330831910910.1038/s41590-021-00964-8)
      Chen, J. et al. NR4A transcription factors limit CAR T cell function in solid tumours. Nature 567, 530–534 (2019). (PMID: 30814732654609310.1038/s41586-019-0985-x)
      Carnevale, J. et al. RASA2 ablation in T cells boosts antigen sensitivity and long-term function. Nature 609, 174–182 (2022). (PMID: 36002574943332210.1038/s41586-022-05126-w)
      Hashimoto, M. et al. PD-1 combination therapy with IL-2 modifies CD8 + T cell exhaustion program. Nature 610, 173–181 (2022). (PMID: 36171288979389010.1038/s41586-022-05257-0)
      Codarri Deak, L. et al. PD-1-cis IL-2R agonism yields better effectors from stem-like CD8 + T cells. Nature 610, 161–172 (2022). (PMID: 36171284953475210.1038/s41586-022-05192-0)
      Corria-Osorio, J. et al. Orthogonal cytokine engineering enables novel synthetic effector states escaping canonical exhaustion in tumor-rejecting CD8 + T cells. Nat. Immunol. 24, 869–883 (2023). (PMID: 370811501015425010.1038/s41590-023-01477-2)
      Soerens, A. G. et al. Functional T cells are capable of supernumerary cell division and longevity. Nature 614, 762–766 (2023). (PMID: 3665345310.1038/s41586-022-05626-9)
      Schluns, K. S. & Lefrançois, L. Cytokine control of memory T-cell development and survival. Nat. Rev. Immunol. 3, 269–279 (2003). (PMID: 1266901810.1038/nri1052)
      Klein Geltink, R. I., Kyle, R. L. & Pearce, E. L. Unraveling the complex interplay between T cell metabolism and function. Annu. Rev. Immunol. 36, 461–488 (2018). (PMID: 632352710.1146/annurev-immunol-042617-053019)
      Youngblood, B. et al. Effector CD8 T cells dedifferentiate into long-lived memory cells. Nature 552, 404–409 (2017). (PMID: 29236683596567710.1038/nature25144)
      Russ, B. E. et al. Distinct epigenetic signatures delineate transcriptional programs during virus-specific CD8 + T cell differentiation. Immunity 41, 853–865 (2014). (PMID: 25517617447939310.1016/j.immuni.2014.11.001)
      Sallusto, F., Lenig, D., Förster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999). (PMID: 1053711010.1038/44385)
      Weninger, W., Crowley, M. A., Manjunath, N. & von Andrian, U. H. Migratory properties of naive, effector, and memory CD8 + T cells. J. Exp. Med. 194, 953–966 (2001). (PMID: 11581317219348310.1084/jem.194.7.953)
      Gerlach, C. et al. The chemokine receptor CX3CR1 defines three antigen-experienced CD8 T cell subsets with distinct roles in immune surveillance and homeostasis. Immunity 45, 1270–1284 (2016). (PMID: 27939671517750810.1016/j.immuni.2016.10.018)
      Bresser, K. et al. Replicative history marks transcriptional and functional disparity in the CD8 + T cell memory pool. Nat. Immunol. 23, 791–801 (2022). (PMID: 35393592761272610.1038/s41590-022-01171-9)
      Gattinoni, L. et al. A human memory T cell subset with stem cell-like properties. Nat. Med. 17, 1290–1297 (2011). (PMID: 21926977319222910.1038/nm.2446)
      Geginat, J., Lanzavecchia, A. & Sallusto, F. Proliferation and differentiation potential of human CD8 + memory T-cell subsets in response to antigen or homeostatic cytokines. Blood 101, 4260–4266 (2003). (PMID: 1257631710.1182/blood-2002-11-3577)
      Martinez, G. J. et al. The transcription factor NFAT promotes exhaustion of activated CD8 + T cells. Immunity 42, 265–278 (2015). (PMID: 25680272434631710.1016/j.immuni.2015.01.006)
      Horton, B. L. et al. Lack of CD8 + T cell effector differentiation during priming mediates checkpoint blockade resistance in non-small cell lung cancer. Sci. Immunol. 6, eabi8800 (2021). (PMID: 3471468710.1126/sciimmunol.abi8800)
      Nüssing, S., Trapani, J. A. & Parish, I. A. Revisiting T cell tolerance as a checkpoint target for cancer immunotherapy. Front. Immunol. 11, 589641 (2020). (PMID: 33072137753877210.3389/fimmu.2020.589641)
    • Publication Date:
      Date Created: 20231011 Date Completed: 20231027 Latest Revision: 20231027
    • Publication Date:
      20240829
    • Accession Number:
      10.1038/s41568-023-00615-0
    • Accession Number:
      37821656