References: Avraamides, M. N., & Kelly, J. W. (2008). Multiple systems of spatial memory and action. Cognitive Processing, 9, 93–106. (PMID: 10.1007/s10339-007-0188-517899235)
Basten, K., Meilinger, T., & Mallot, H. A. (2012). Mental travel primes place orientation in spatial recall. Lecture Notes in Artificial Intelligence, 7463, 378–385.
Batschelet, E. (1981). Circular statistics in biology. Academic Press.
Berens, P. (2009). Circstat: A matlab toolbox for circular statistics. Journal of Statistical Software, 31, 1–21. (PMID: 10.18637/jss.v031.i10)
Bicanski, A., & Burgess, N. (2020). Neuronal vector coding in spatial cognition. Nature Reviews Neuroscience, 21, 453–470. (PMID: 10.1038/s41583-020-0336-932764728)
Bisiach, E., & Luzzatti, C. (1978). Unilateral neglect of representational space. Cortex, 14, 129–133. (PMID: 10.1016/S0010-9452(78)80016-116295118)
Bülthoff, H. H., Edelman, S. Y., & Tarr, M. J. (1995). How are three-dimensional objects represented in the brain? Cerebral Cortex, 5, 247–260. (PMID: 10.1093/cercor/5.3.2477613080)
Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37–46. (PMID: 10.1177/001316446002000104)
Guariglia, C., Palermo, L., Piccardi, L., Iaria, G., & Incoccia, C. (2013). Neglecting the left side of a city square but not the left side of its clock: Prevalence and characteristics of representational neglect. PLoS One, 8(7), e67390. (PMID: 10.1371/journal.pone.0067390238744163707912)
Julian, J. B., Keinath, A. T., Marchette, S. A., & Epstein, R. A. (2018). The neurocognitive basis of spatial reorientation. Current Biology, 28, R1059–R1073. (PMID: 10.1016/j.cub.2018.04.05730205055)
Kelly, J. W., Avraamides, M. N., & Loomis, J. M. (2007). Sensorimotor alignment effects in the learning environment and in novel environments. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 1092. (PMID: 17983315)
Kelly, J. W., Cherep, L. A., Klesel, B., Siegel, Z. D., & George, S. (2018). Comparison of two methods for improving distance perception in virtual reality. ACM Transactions on Applied Perception, 15, 1092–1107. (PMID: 10.1145/3165285)
Klatzky, R. L. (1998). Allocentric and egocentric spatial representations: Definitions, distinctions, and interconnections. Lecture Notes in Artificial Intelligence, 1404, 1–17.
Lessels, S., & Ruddle, R. A. (2005). Movement around real and virtual cluttered environments. Presence: Teleoperators & Virtual Environments, 14, 580–596. (PMID: 10.1162/105474605774918778)
Le Vinh, L., Meert, A., & Mallot, H. A. (2020). The influence of position on spatial presentation in working memory. Lecture Notes in Artificial Intelligence, 12162, 50–58.
Mallot, H. A. (2024). From geometry to behavior: An introduction to spatial cognition. The MIT Press. (PMID: 10.7551/mitpress/9621.001.0001)
Mallot, H. A., Ecke, G. A., & Baumann, T. (2020). Dual population coding for path planning in graphs with overlapping place representations. Lecture Notes in Artificial Intelligence, 12162, 3–17.
Marchette, S. A., Vass, L. K., Ryan, J., & Epstein, R. A. (2014). Anchoring the neural compass: Coding of local spatial reference frames in human medial parietal lobe. Nature Neuroscience, 17, 1598–1606. (PMID: 10.1038/nn.3834252826164309016)
May, M. (2004). Imaginal perspective switches in remembered environments: Transformation versus interference accounts. Cognitive Psychology, 48, 163–206. (PMID: 10.1016/S0010-0285(03)00127-014732410)
Meilinger, T. (2008). The network of reference frames theory: A synthesis of graphs and cognitive maps. Lecture Notes in Artificial Intelligence, 5248, 344–360.
Meilinger, T., Frankenstein, J., Simon, N., Bülthoff, H. H., & Bresciani, J.-P. (2016). Not all memories are the same: Situational context influences spatial recall within one’s city of residency. Psychonomic Bulletin & Review, 23, 246–252. (PMID: 10.3758/s13423-015-0883-7)
Meilinger, T., & Vosgerau, G. (2010). Putting egocentric and allocentric into perspective. Lecture Notes in Artificial Intelligence, 6222, 207–221.
Montello, D. R. (1991). Spatial orientation and the angularity of urban routes: A field study. Environment and Behavior, 23, 47–69. (PMID: 10.1177/0013916591231003)
Montello, D. R. (1993). Scale and multiple psychologies of space. Lecture Notes in Computer Science, 716, 312–321. (PMID: 10.1007/3-540-57207-4_21)
Mou, W., & McNamara, T. P. (2002). Intrinsic frames of reference in spatial memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 162–179. (PMID: 11827078)
Riecke, B. E., & McNamara, T. P. (2017). Where you are affects what you can easilys imagine: environmental geometry elicits sensorimotor interference in remote perspective taking. Cognition, 169, 1–14. (PMID: 10.1016/j.cognition.2017.07.014288021035612917)
Röhrich, W. G., Hardiess, G., & Mallot, H. A. (2014). View-based organization and interplay of spatial working and long-term memories. PLoS One, 9(11), e112793. (PMID: 10.1371/journal.pone.0112793254094374237361)
Ruddle, R. A., & Jones, D. M. (2001). Movement in cluttered virtual environments. Presence: Teleoperators & Virtual Environments, 10, 511–524. (PMID: 10.1162/105474601753132687)
Sanchez-Vives, M. V., & Slater, M. (2005). From presence to consciousness through virtual reality. Nature Reviews Neuroscience, 6, 332–339. (PMID: 10.1038/nrn165115803164)
Schölkopf, B., & Mallot, H. A. (1995). View-based cognitive mapping and path planning. Adaptive Behavior, 3, 311–348. (PMID: 10.1177/105971239500300303)
Shelton, A. L., & McNamara, T. P. (2001). Systems of spatial reference in human memory. Cognitive Psychology, 43, 274–310. (PMID: 10.1006/cogp.2001.075811741344)
Slater, M., Lotto, B., Arnold, M. M., & Sanchez-Vives, M. V. (2009). How we experience immersive virtual environments: The concept of presence and measurement. Anuario de Psicologia, 40, 193–210.
Wang, R. F., & Brockmole, J. R. (2003). Human navigation in nested environments. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 398–404. (PMID: 12776750)
Werner, S., & Schmidt, K. (1999). Environmental reference systems for large-scale spaces. Spatial Cognition and Computation, 1, 447–473. (PMID: 10.1023/A:1010095831166)
No Comments.