Perceived spatial presence and body orientation affect the recall of out-of-sight places in an immersive sketching experiment.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Grochulla B;Grochulla B; Mallot HA; Mallot HA
  • Source:
    Psychological research [Psychol Res] 2024 Mar; Vol. 88 (2), pp. 509-522. Date of Electronic Publication: 2023 Oct 11.
  • Publication Type:
    Journal Article
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 0435062 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1430-2772 (Electronic) Linking ISSN: 03400727 NLM ISO Abbreviation: Psychol Res Subsets: MEDLINE
    • Publication Information:
      Original Publication: Berlin, New York, Springer-Verlag.
    • Subject Terms:
    • Abstract:
      The orientation of sketch maps of remote but familiar city squares produced from memory has been shown to depend on the distance and airline direction from the production site to the remembered square (position-dependent recall, Röhrich et al. in PLoS One 9(11): e112793, 2014). Here, we present a virtual reality version of the original experiment and additionally study the role of body orientation. Three main points can be made: First, "immersive sketching" is a novel and useful paradigm in which subjects sketch maps live on paper while being immersed in virtual reality. Second, the original effect of position-dependent recall was confirmed, indicating that the sense of being present at a particular location, even if generated in a virtual environment, suffices to bias the imagery of distant places. Finally, the orientation of the produced sketch maps depended also on the body orientation of the subjects. At each production site, body orientation was controlled by varying the position of the live feed in the virtual environment, such that subjects had to turn towards the prescribed direction. Position-dependent recall is strongest if subjects are aligned with the airline direction to the target and virtually goes away if they turn in the opposite direction. We conclude that the representation of out-of-sight target places depends on both the current airline direction to the target and the body orientation.
      (© 2023. The Author(s).)
    • References:
      Avraamides, M. N., & Kelly, J. W. (2008). Multiple systems of spatial memory and action. Cognitive Processing, 9, 93–106. (PMID: 10.1007/s10339-007-0188-517899235)
      Basten, K., Meilinger, T., & Mallot, H. A. (2012). Mental travel primes place orientation in spatial recall. Lecture Notes in Artificial Intelligence, 7463, 378–385.
      Batschelet, E. (1981). Circular statistics in biology. Academic Press.
      Berens, P. (2009). Circstat: A matlab toolbox for circular statistics. Journal of Statistical Software, 31, 1–21. (PMID: 10.18637/jss.v031.i10)
      Bicanski, A., & Burgess, N. (2020). Neuronal vector coding in spatial cognition. Nature Reviews Neuroscience, 21, 453–470. (PMID: 10.1038/s41583-020-0336-932764728)
      Bisiach, E., & Luzzatti, C. (1978). Unilateral neglect of representational space. Cortex, 14, 129–133. (PMID: 10.1016/S0010-9452(78)80016-116295118)
      Bülthoff, H. H., Edelman, S. Y., & Tarr, M. J. (1995). How are three-dimensional objects represented in the brain? Cerebral Cortex, 5, 247–260. (PMID: 10.1093/cercor/5.3.2477613080)
      Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37–46. (PMID: 10.1177/001316446002000104)
      Guariglia, C., Palermo, L., Piccardi, L., Iaria, G., & Incoccia, C. (2013). Neglecting the left side of a city square but not the left side of its clock: Prevalence and characteristics of representational neglect. PLoS One, 8(7), e67390. (PMID: 10.1371/journal.pone.0067390238744163707912)
      Julian, J. B., Keinath, A. T., Marchette, S. A., & Epstein, R. A. (2018). The neurocognitive basis of spatial reorientation. Current Biology, 28, R1059–R1073. (PMID: 10.1016/j.cub.2018.04.05730205055)
      Kelly, J. W., Avraamides, M. N., & Loomis, J. M. (2007). Sensorimotor alignment effects in the learning environment and in novel environments. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 1092. (PMID: 17983315)
      Kelly, J. W., Cherep, L. A., Klesel, B., Siegel, Z. D., & George, S. (2018). Comparison of two methods for improving distance perception in virtual reality. ACM Transactions on Applied Perception, 15, 1092–1107. (PMID: 10.1145/3165285)
      Klatzky, R. L. (1998). Allocentric and egocentric spatial representations: Definitions, distinctions, and interconnections. Lecture Notes in Artificial Intelligence, 1404, 1–17.
      Lessels, S., & Ruddle, R. A. (2005). Movement around real and virtual cluttered environments. Presence: Teleoperators & Virtual Environments, 14, 580–596. (PMID: 10.1162/105474605774918778)
      Le Vinh, L., Meert, A., & Mallot, H. A. (2020). The influence of position on spatial presentation in working memory. Lecture Notes in Artificial Intelligence, 12162, 50–58.
      Mallot, H. A. (2024). From geometry to behavior: An introduction to spatial cognition. The MIT Press. (PMID: 10.7551/mitpress/9621.001.0001)
      Mallot, H. A., Ecke, G. A., & Baumann, T. (2020). Dual population coding for path planning in graphs with overlapping place representations. Lecture Notes in Artificial Intelligence, 12162, 3–17.
      Marchette, S. A., Vass, L. K., Ryan, J., & Epstein, R. A. (2014). Anchoring the neural compass: Coding of local spatial reference frames in human medial parietal lobe. Nature Neuroscience, 17, 1598–1606. (PMID: 10.1038/nn.3834252826164309016)
      May, M. (2004). Imaginal perspective switches in remembered environments: Transformation versus interference accounts. Cognitive Psychology, 48, 163–206. (PMID: 10.1016/S0010-0285(03)00127-014732410)
      Meilinger, T. (2008). The network of reference frames theory: A synthesis of graphs and cognitive maps. Lecture Notes in Artificial Intelligence, 5248, 344–360.
      Meilinger, T., Frankenstein, J., Simon, N., Bülthoff, H. H., & Bresciani, J.-P. (2016). Not all memories are the same: Situational context influences spatial recall within one’s city of residency. Psychonomic Bulletin & Review, 23, 246–252. (PMID: 10.3758/s13423-015-0883-7)
      Meilinger, T., & Vosgerau, G. (2010). Putting egocentric and allocentric into perspective. Lecture Notes in Artificial Intelligence, 6222, 207–221.
      Montello, D. R. (1991). Spatial orientation and the angularity of urban routes: A field study. Environment and Behavior, 23, 47–69. (PMID: 10.1177/0013916591231003)
      Montello, D. R. (1993). Scale and multiple psychologies of space. Lecture Notes in Computer Science, 716, 312–321. (PMID: 10.1007/3-540-57207-4_21)
      Mou, W., & McNamara, T. P. (2002). Intrinsic frames of reference in spatial memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 162–179. (PMID: 11827078)
      Riecke, B. E., & McNamara, T. P. (2017). Where you are affects what you can easilys imagine: environmental geometry elicits sensorimotor interference in remote perspective taking. Cognition, 169, 1–14. (PMID: 10.1016/j.cognition.2017.07.014288021035612917)
      Röhrich, W. G., Hardiess, G., & Mallot, H. A. (2014). View-based organization and interplay of spatial working and long-term memories. PLoS One, 9(11), e112793. (PMID: 10.1371/journal.pone.0112793254094374237361)
      Ruddle, R. A., & Jones, D. M. (2001). Movement in cluttered virtual environments. Presence: Teleoperators & Virtual Environments, 10, 511–524. (PMID: 10.1162/105474601753132687)
      Sanchez-Vives, M. V., & Slater, M. (2005). From presence to consciousness through virtual reality. Nature Reviews Neuroscience, 6, 332–339. (PMID: 10.1038/nrn165115803164)
      Schölkopf, B., & Mallot, H. A. (1995). View-based cognitive mapping and path planning. Adaptive Behavior, 3, 311–348. (PMID: 10.1177/105971239500300303)
      Shelton, A. L., & McNamara, T. P. (2001). Systems of spatial reference in human memory. Cognitive Psychology, 43, 274–310. (PMID: 10.1006/cogp.2001.075811741344)
      Slater, M., Lotto, B., Arnold, M. M., & Sanchez-Vives, M. V. (2009). How we experience immersive virtual environments: The concept of presence and measurement. Anuario de Psicologia, 40, 193–210.
      Wang, R. F., & Brockmole, J. R. (2003). Human navigation in nested environments. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 398–404. (PMID: 12776750)
      Werner, S., & Schmidt, K. (1999). Environmental reference systems for large-scale spaces. Spatial Cognition and Computation, 1, 447–473. (PMID: 10.1023/A:1010095831166)
    • Grant Information:
      381713393 Deutsche Forschungsgemeinschaft
    • Publication Date:
      Date Created: 20231011 Date Completed: 20240214 Latest Revision: 20240314
    • Publication Date:
      20240314
    • Accession Number:
      PMC10858104
    • Accession Number:
      10.1007/s00426-023-01877-x
    • Accession Number:
      37819501