From "self-differentiation" to organoids-the quest for the units of development.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Schlosser G;Schlosser G
  • Source:
    Development genes and evolution [Dev Genes Evol] 2024 Dec; Vol. 234 (2), pp. 57-64. Date of Electronic Publication: 2023 Oct 10.
  • Publication Type:
    Journal Article; Review
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 9613264 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-041X (Electronic) Linking ISSN: 0949944X NLM ISO Abbreviation: Dev Genes Evol Subsets: MEDLINE
    • Publication Information:
      Original Publication: Berlin : Springer-Verlag, c1996-
    • Subject Terms:
    • Abstract:
      As proposed by Wilhelm Roux in 1885, the key goal of experimental embryology ("Entwicklungsmechanik") was to elucidate whether organisms or their parts develop autonomously ("self-differentiation") or require interactions with other parts or the environment. However, experimental embryologists soon realized that concepts like "self-differentiation" only make sense when applied to particular parts or units of the developing embryo as defined both in time and space. Whereas the formation of tissues or organs may initially depend on interactions with surrounding tissues, they later become independent of such interactions or "determined." Moreover, the determination of a particular tissue or organ primordium has to be distinguished from the spatially coordinated determination of its parts-what we now refer to as "patterning." While some primordia depend on extrinsic influences (e.g., signals from adjacent tissues) for proper patterning, others rely on intrinsic mechanisms. Such intrinsically patterned units may behave as "morphogenetic fields" that can compensate for lost parts and regulate their size and proper patterning. While these insights were won by experimental embryologists more than 100 years ago, they retain their relevance today. To enable the generation of more life-like organoids in vitro for studying developmental processes and diseases in a dish, questions about the spatiotemporal units of development (when and how tissues and organs are determined and patterned) need to be increasingly considered. This review briefly sketches this conceptual history and its continued relevance by focusing on the determination and patterning of the inner ear with a specific emphasis on some studies published in this journal.
      Competing Interests: Declarations. Competing interests: The author declares no competing interests.
      (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Abello G, Alsina B (2007) Establishment of a proneural field in the inner ear. Int J Dev Biol 51:483–493. (PMID: 1789171110.1387/ijdb.072343ga)
      Ben-Zvi D, Shilo BZ, Barkai N (2011) Scaling of morphogen gradients. Curr Opin Genet Dev 21:704–710. (PMID: 2187304510.1016/j.gde.2011.07.011)
      Braus H (1904) Einige Ergebnisse der Transplantation von Organanlagen bei Bombinatorlarven. Verh d Anatom Ges 18:53–66.
      Clevers H (2016) Modeling development and disease with organoids. Cell 165:1586–1597. (PMID: 2731547610.1016/j.cell.2016.05.082)
      De Robertis EM, Morita EA, Cho KWY (1991) Gradient fields and homeobox genes. Development 112:669–678. (PMID: 168212410.1242/dev.112.3.669)
      Delgado I, Torres M (2017) Coordination of limb development by crosstalk among axial patterning pathways. Dev Biol 429:382–386. (PMID: 2828340510.1016/j.ydbio.2017.03.006)
      Driesch H (1891) Entwicklungsmechanische Studien. I. Der Werth der beiden ersten Furchungszellen in der Echinodermenentwicklung. Experimentelle Erzeugen von Theil-und Doppelbildungen. Z Zool 53:160–178.
      Driesch H (1899) Die lokalisation morphogenetischer vorgänge. Ein beweis vitalistischen geschehens. Archiv für Entwicklungsmechanik 8:35–111. (PMID: 10.1007/BF02153032)
      Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T et al (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56. (PMID: 2147519410.1038/nature09941)
      Eisinger K, Sternberg H (1923) Beiträge zur Entwicklungsmechanik des inneren Ohres. Archiv f mikrosk Anat u Entwcklungsmechanik 100:542–559. (PMID: 10.1007/BF02108130)
      Fritzsch B, Barald KF, Lomax MI (1998) Early embryology of the vertebrate ear. In: Rubel EW, Popper AN, Fay RR (eds) Development of the auditory system. Springer, New York, pp 80–145. (PMID: 10.1007/978-1-4612-2186-9_3)
      Ginsburg AS (1995) Determination of the labyrinth in different amphibina species and its correlation with determination of the other ectoderm derivatives. Roux’s Arch Dev Biol 204:351–358. (PMID: 10.1007/BF00360480)
      Groves AK, Fekete DM (2012) Shaping sound in space: the regulation of inner ear patterning. Development 139:245–257. (PMID: 22186725324309210.1242/dev.067074)
      Harrison RG (1907) Experiments in transplanting limbs and their bearing upon the problems of the development of nerves. J Exp Zool 4:239–281. (PMID: 10.1002/jez.1400040205)
      Harrison RG (1918) Experiments on the development of the fore limb of Amblystoma, a self-differentiating, equipotential system. J Exp Zool 25:413–461. (PMID: 10.1002/jez.1400250204)
      Harrison RG (1924) Experiments on the development of the internal ear. Science 59:448.
      Harrison RG (1936) Relations of symmetry in the developing ear of Amblystoma punctatum. Proc Natl Acad Sci USA 22:238–247. (PMID: 16577704107675010.1073/pnas.22.4.238)
      Harrison RG (1969) Harrison stages and description of the normal development of the spotted salamander, Amblystoma punctatum (Linn.). In: Harrison RG (ed) Organization and development of the embryo. New Haven, Yale University Press.
      Hollinshead WH (1932) Determination of potencies in the forelimb of Amblystoma punctatum. J Exp Zool 73:183–194. (PMID: 10.1002/jez.1400730110)
      Huxley JS, de Beer GR (1934) The elements of experimental embryology. Cambridge University Press, Cambridge.
      Kaan HW (1927) Experiments on the development of the ear of Amblystoma punctatum. J ExpZool 46:13–61.
      Kicheva A, Briscoe J (2015) Developmental pattern formation in phases. Trends Cell Biol 25:579–591. (PMID: 2641040410.1016/j.tcb.2015.07.006)
      Maienschein J (2014) Embryos under the microscope. MA, Harvard University Press, Cambridge. (PMID: 10.4159/9780674369726)
      Plouhinec JL, De Robertis EM (2009) Systems biology of the self-regulating morphogenetic gradient of the Xenopus gastrula. Cold Spring Harb Perspect Biol 1:a001701. (PMID: 20066084274208910.1101/cshperspect.a001701)
      Raft S, Groves AK (2015) Segregating neural and mechanosensory fates in the developing ear: patterning, signaling, and transcriptional control. Cell Tissue Res 359:315–332. (PMID: 2490266610.1007/s00441-014-1917-6)
      Roccio M, Edge ASB (2019) Inner ear organoids: new tools to understand neurosensory cell development, degeneration and regeneration. Development 146:dev177188.
      Röhlich K (1929) Experimentelle untersuchungen über den zeitpunkt der determination der gehörblase bei Amblystoma-Embryonen. Wilhelm Roux’ Archiv für Entwicklungsmechanik der Organismen 118:164–199. (PMID: 2835418510.1007/BF02108874)
      Roux W (1885) Beiträge zur Entwickelungsmechanik des Embryos. I. Zur Orientirung über einige Probleme der organischen Entwickelung. Z Biol 21:411–524.
      Roux W (1888) Beiträge zur Entwickelungsmechanik des Embryo. V. Ueber die künstliche Hervorbringung “halber” Embryonen durch Zerstörung einer der beiden ersten Furchungszellen, sowie über die Nachentwickelung (Post generation) der fehlenden Körperhälfte. Virchow’s Archiv 114:419–521.
      Saha M (1991) Spemann seen through a lens. In: Gilbert SF (ed) A conceptual history of modern embryology. Plenum Press, New York, pp 91–108. (PMID: 10.1007/978-1-4615-6823-0_5)
      Sasai Y (2013) Cytosystems dynamics in self-organization of tissue architecture. Nature 493:318–326. (PMID: 2332521410.1038/nature11859)
      Schaper A (1904) Über einige fälle atypischer linsenentwicklung unter abnormen bedingungen. Anat Anz 24:305–326.
      Schlosser G (2021) Development of sensory and neurosecretory cell types. Vertebrate cranial placodes, Vol.1. Boca Raton. CRC Press. (PMID: 10.1201/9781315162317)
      Simunovic M, Brivanlou AH (2017) Embryoids, organoids and gastruloids: new approaches to understanding embryogenesis. Development 144:976–985. (PMID: 28292844535811410.1242/dev.143529)
      Slack JMW (1991) From egg to embryo. Cambridge Univ, Press, Cambridge. (PMID: 10.1017/CBO9780511525322)
      Spemann H (1901) Ueber Correlationen in der Entwicklung des Auges. Verh Anat Ges 15:61–79.
      Spemann H (1905) Über Linsenbildung nach experimenteller Entfernung der primären Linsenbildungszellen. Zool Anzeiger 28:419–432.
      Spemann H (1906) Über eine neue Methode der embryonalen Transplantation. Verhand Deutsch Zool Gesellsch 16:195–202.
      Spemann H (1910) Die Entwicklung des invertierten Hörgrübchens zum Labyrinth. Archiv für Entwicklungsmechanik 30:437–458. (PMID: 10.1007/BF02263820)
      Spemann H (1918) Über die Determination der ersten Organanlagen des Amphibienembryo. Archiv für Entwicklungsmechanik 43:448–555. (PMID: 10.1007/BF02267308)
      Spemann H (1921) Die Erzeugung tierischer Chimären durch heteroplastische embryonale Transplantationen zwischen Triton cristatus und taeniatus. Roux Arch Entwickl mech 48:533–570. (PMID: 10.1007/BF02554578)
      Spemann H (1936) Experimentelle Beiträge zu einer Theorie der Entwicklung. Springer, Berlin. (PMID: 10.1007/978-3-642-92278-7)
      Spemann H, Geinitz B (1927) Über Weckung organisatorischer Fähigkeiten durch Verpflanzung in organisatorische Umgebung. Archiv für Entwicklungsmechanik 109:129–175. (PMID: 10.1007/BF02079696)
      Stocum DL, Fallon JF (1982) Control of pattern formation in urodele limb ontogeny: a review and a hypothesis. J Embryol Exp Morphol 69:7–36. (PMID: 7119674)
      Streeter GL (1907) Some factors in the development of the amphibian ear vesicle and further experiments on equilibration. J Exp Zool 4:431–445. (PMID: 10.1002/jez.1400040306)
      van der Valk WH, Steinhart MR, Zhang J, Koehler KR (2021) Building inner ears: recent advances and future challenges for in vitro organoid systems. Cell Death Differ 28:24–34. (PMID: 3331860110.1038/s41418-020-00678-8)
      Weismann A (1885) Die Continuität des Keimplasma’s als Grundlage einer Theorie der Vererbung. Jena, Gustav Fischer.
      Weiss P (1939) Principles of development. Henry Holt and Co, New York.
      Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25:1–47. (PMID: 439073410.1016/S0022-5193(69)80016-0)
      Wu DK, Kelley MW (2012) Molecular mechanisms of inner ear development. Cold Spring Harb Perspect Biol 4:a008409. (PMID: 22855724340586010.1101/cshperspect.a008409)
      Yntema CL (1933) Experiments on the determination of the ear ectoderm in the embryo of Amblystoma punctatum. J Exp Zool 65:317–357. (PMID: 10.1002/jez.1400650303)
      Yntema CL (1939) Self-differentiation of heterotopic ear ectoderm in the embryo of Amblystoma punctatum. J Exp Zool 80:1–17. (PMID: 10.1002/jez.1400800102)
      Zuniga A (2015) Next generation limb development and evolution: old questions, new perspectives. Development 142:3810–3820. (PMID: 2657720410.1242/dev.125757)
    • Contributed Indexing:
      Keywords: Determination; Ear; Induction; Morphogenetic field; Otic vesicle
    • Publication Date:
      Date Created: 20231010 Date Completed: 20241202 Latest Revision: 20241212
    • Publication Date:
      20241212
    • Accession Number:
      10.1007/s00427-023-00711-z
    • Accession Number:
      37815616