A Review of Computational Approach for S-system-based Modeling of Gene Regulatory Network.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Mandal S;Mandal S; Dutta P; Dutta P
  • Source:
    Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2024; Vol. 2719, pp. 133-152.
  • Publication Type:
    Review; Journal Article
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE
    • Publication Information:
      Publication: Totowa, NJ : Humana Press
      Original Publication: Clifton, N.J. : Humana Press,
    • Subject Terms:
    • Abstract:
      Inference of gene regulatory network (GRN) from time series microarray data remains as a fascinating task for computer science researchers to understand the complex biological process that occurred inside a cell. Among the different popular models to infer GRN, S-system is considered as one of the promising non-linear mathematical tools to model the dynamics of gene expressions, as well as to infer the GRN. S-system is based on biochemical system theory and power law formalism. By observing the value of kinetic parameters of S-system model, it is possible to extract the regulatory relationships among genes. In this review, several existing intelligent methods that were already proposed for inference of S-system-based GRN are explained. It is observed that finding out the most suitable and efficient optimization technique for the accurate inference of all kinds of networks, i.e., in-silico, in-vivo, etc., with less computational complexity is still an open research problem to all. This paper may help the beginners or researchers who want to continue their research in the field of computational biology and bioinformatics.
      (© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Quackenbush J (2002) Microarray data normalization and transformation. Nat Genet 32(4):496–501. (PMID: 10.1038/ng1032)
      Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470. (PMID: 10.1126/science.270.5235.467)
      Shyamsundar R, Kim YH, Higgins JP, Montgomery K, Jorden M, Sethuraman A, van de Rijn M, Botstein D, Brown PO, Pollack JR (2005) A DNA microarray survey of gene expression in normal human tissues. Genome Biol 6(3):1–9. (PMID: 10.1186/gb-2005-6-3-r22)
      Stanford Microarray Database. http://smd.stanford.edu.
      Gene Expression Omnibus (GEO). http://www.ncbi.nlm.nih.gov/geo.
      AmiGO. http://www.godatabase.org/cgi-bin/go.cgi.
      Akutsu T, Miyano S, Kuhara S (1999) Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. In: Biocomputing’99. 17–28.
      Weaver DC, Workman CT, Stormo GD (1999) Modeling regulatory networks with weight matrices. In: Biocomputing’99. 112–123.
      Perrin BE, Ralaivola L, Mazurie A, Bottani S, Mallet J, d’Alche-Buc F (2003) Gene networks inference using dynamic Bayesian networks. Bioinformatics 19(suppl_2):ii138–ii148. (PMID: 10.1093/bioinformatics/btg1071)
      Werhli AV, Grzegorczyk M, Husmeier D (2006) Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks. Bioinformatics 22(20):2523–2531. (PMID: 10.1093/bioinformatics/btl391)
      Keedwell E, Narayanan A (2005) Discovering gene networks with a neural-genetic hybrid. IEEE/ACM Trans Comput Biol Bioinform 2(3):231–242. (PMID: 10.1109/TCBB.2005.40)
      Wahde M, Hertz J (2001) Modeling genetic regulatory dynamics in neural development. J Comput Biol 8(4):429–442. (PMID: 10.1089/106652701752236223)
      Mandal S, Saha G, Pal RK (2016) Inference of gene regulatory networks with neural-cuckoo hybrid. Adv Comput Syst Secur 1:87–99. (PMID: 10.1007/978-81-322-2650-5_6)
      Kentzoglanakis K, Poole M (2011) A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures. IEEE/ACM Trans Comput Biol Bioinform 9(2):358–371. (PMID: 10.1109/TCBB.2011.87)
      Noman N, Palafox L, Iba H (2013) Reconstruction of gene regulatory networks from gene expression data using decoupled recurrent neural network model. Nat Comput Beyond 6:93–103. (PMID: 10.1007/978-4-431-54394-7_8)
      Mandal S, Khan A, Saha G, Pal RK (2016) Large-scale recurrent neural network based modelling of gene regulatory network using cuckoo search-flower pollination algorithm. Adv Bioinforma 2016:1–9. (PMID: 10.1155/2016/5283937)
      Savageau MA, Voit EO (1987) Recasting nonlinear differential equations as S-systems: a canonical nonlinear form. Math Biosci 87:83–115. (PMID: 10.1016/0025-5564(87)90035-6)
      Savageau MA (1988) Introduction to S-systems and the underlying power-law formalism. Math Comput Model 11:546–551. (PMID: 10.1016/0895-7177(88)90553-5)
      Sorribas A, Savageau MA (1989) Strategies for representing metabolic pathways within biochemical systems theory: reversible pathways. Math Biosci 94(2):239–269. (PMID: 10.1016/0025-5564(89)90066-7)
      Savageau MA (1969) Biochemical systems analysis I. Some mathematical properties of the rate law for the component enzymatic reactions. J Theoret Biol 25:365–369. (PMID: 10.1016/S0022-5193(69)80026-3)
      Savageau MA (1969) Biochemical systems analysis II. The steady state solutions for an n-pool system using a power-law approximation. J Theoret Biol 25:370–379. (PMID: 10.1016/S0022-5193(69)80027-5)
      Savageau MA (1970) Biochemical systems analysis III. Dynamic solutions using a power law approximation. J Theoret Biol 26:215–226. (PMID: 10.1016/S0022-5193(70)80013-3)
      Savageau MA (1971) Concepts relating the behavior of biochemical systems to their underlying molecular properties. Arch Biochem Biophys 145:612–621. (PMID: 10.1016/S0003-9861(71)80021-8)
      Savageau MA (1972) The behavior of intact biochemical control svstems. Curr Top Cell Reg 6:63–130. (PMID: 10.1016/B978-0-12-152806-5.50010-2)
      Savageau MA (1976) Biochemical systems analysis: a study of function and design in molecular biology. Addison-Wesley, Reading.
      Savageau MA, Voit EO, Irvine DH (1987) Biochemical systems theory and metabolic control theory: 1. Fundamental similarities and differences. Math Biosci 86(2):127–145. (PMID: 10.1016/0025-5564(87)90007-1)
      Savageau MA, Voit EO, Irvine DH (1987) Biochemical systems theory and metabolic control theory: 2. The role of summation and connectivity relationships. Math Biosci 86(2):147–169. (PMID: 10.1016/0025-5564(87)90008-3)
      Voit EO (2013) Biochemical systems theory (BST): a review. International Scholarly Research Network (ISRN) Biomathematics 2013:1–53.
      Savageau MA, Voit EO (1982) Power-law approach to modeling biological systems: I. Theory. J Ferment Technol 60(3):221–228.
      Savageau MA (1996) Power-law formalism: a canonical nonlinear approach to modeling and analysis. Proc 1st World Congr Nonlinear Anal 4:3323–3334. (PMID: 10.1515/9783110883237.3323)
      Voit E, Chou IC (2010) Parameter estimation in canonical biological systems models. Int J Syst Synthet Biol 1(1):1–9.
      Horn FJM, Jackson R (1972) General mass action kinetics. Arch Ration Mech 47:81–116. (PMID: 10.1007/BF00251225)
      Müller S, Regensburger G (2012) Generalized mass action systems: complex balancing equilibria and sign vectors of the stoichiometric and kinetic-order subspaces. SIAM J Appl Math 72:1926–1947. (PMID: 10.1137/110847056)
      Voit EO, Martens HA, Omholt SW (2015) 150 years of the mass action law. PLoS Comput Biol 11(1):e1004012. (PMID: 10.1371/journal.pcbi.1004012)
      Lewis DC (1991) A qualitative analysis of S-systems: Hopf bifurcations. Canonical nonlinear modeling. S-system approach to understanding complexity. Van Nostrand Reinhold, New York, pp 304–344.
      Voit EO (1993) S-system modeling of complex systems with chaotic input. Environmetrics 4:153–186. (PMID: 10.1002/env.3170040203)
      Savageau MA (1991) 20 years of S-systems. ln: Voit EO (ed) Canonical nonlinear modeling S-system approach understanding complexity. Van Nostrand Reinhold, New York, p 1–44.
      Thieffry D, Huerta AM, Pérez-Rueda E, Collado-Vides J (1998) From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. Bioessays 20(5):433–440. (PMID: 10.1002/(SICI)1521-1878(199805)20:5<433::AID-BIES10>3.0.CO;2-2)
      Kimura S, Ide K, Kashihara A, Kano M, Hatakeyama M, Masui R, Nakagawa N, Yokoyama S, Kuramitsu S, Konagaya A (2005) Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm. Bioinformatics 21(7):1154–1163. (PMID: 10.1093/bioinformatics/bti071)
      Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82. (PMID: 10.1109/4235.585893)
      Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, Kasif S, Collins JJ, Gardner TS (2007) Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 5(1):e8. (PMID: 10.1371/journal.pbio.0050008)
      Schaffter T, Marbach D, Floreano D (2011) GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics 27(16):2263–2270. (PMID: 10.1093/bioinformatics/btr373)
      Ronen M, Rosenberg R, Shraiman BI, Alon U (2002) Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics. Proc Natl Acad Sci 99(16):10555–10560. (PMID: 10.1073/pnas.152046799)
      E. Coli SOS Network time series data. http://www.weizmann.ac.il/mcb/UriAlon/download/downloadable-data.
      Akutsu T, Miyano S, Kuhara S (2000) Inferring qualitative relations in genetic networks and metabolic pathways. Bioinformatics 16(8):727–734. (PMID: 10.1093/bioinformatics/16.8.727)
      Kikuchi S, Tominaga D, Arita M, Takahashi K, Tomita M (2003) Dynamic modeling of genetic networks using genetic algorithm and S-system. Bioinformatics 19(5):643–650. (PMID: 10.1093/bioinformatics/btg027)
      Spieth C, Streichert F, Speer N, Zell A (2004) A memetic inference method for gene regulatory networks based on S-Systems. In: Proceedings of the 2004 congress on evolutionary computation. 1:152–157.
      Noman N, Iba H (2005) Reverse engineering genetic networks using evolutionary computation. Genome Inform 16(2):205–214.
      Noman N, Iba H (2006) On the reconstruction of gene regulatory networks from noisy expression profiles. In: IEEE international conference on evolutionary computation. 2543–2550.
      Wang H, Qian L, Dougherty E (2010) Inference of gene regulatory networks using S-system: a unified approach. IET Syst Biol 4(2):145–156. (PMID: 10.1049/iet-syb.2008.0175)
      Noman N, Iba H (2007) Inferring gene regulatory networks using differential evolution with local search heuristics. IEEE/ACM Trans Comput Biol Bioinform 4(4):634–647. (PMID: 10.1109/TCBB.2007.1058)
      Murata H, Koshino M, Mitamura M, Kimura H (2008). Inference of S-system models of genetic networks using product unit neural networks. In: IEEE international conference on systems, man and cybernetics. 1390–1395.
      Kabir M, Noman N, Iba H (2010) Reverse engineering gene regulatory network from microarray data using linear time-variant model. BMC Bioinform 11:1–5. (PMID: 10.1186/1471-2105-11-S1-S56)
      Chowdhury AR, Chetty M (2011) An improved method to infer gene regulatory network using s-system. In: IEEE congress of evolutionary computation (CEC). 1012–1019.
      Nakayama T, Seno S, Takenaka Y, Matsuda H (2011) Inference of S-system models of gene regulatory networks using immune algorithm. J Bioinforma Comput Biol 9(supp01):75–86. (PMID: 10.1142/S0219720011005768)
      Liu LZ, Wu FX, Zhang WJ (2011) Inference of biological S-system using the separable estimation method and the genetic algorithm. IEEE/ACM Trans Comput Biol Bioinform 9(4):955–965.
      Chowdhury AR, Chetty M, Vinh NX (2012) Adaptive regulatory genes cardinality for reconstructing genetic networks. In: IEEE congress on evolutionary computation. 1–8.
      Chowdhury AR, Chetty M, Vinh NX (2013) Incorporating time-delays in S-system model for reverse engineering genetic networks. BMC Bioinform 14:1–22. (PMID: 10.1186/1471-2105-14-196)
      Palafox L, Noman N, Iba H (2012) Reverse engineering of gene regulatory networks using dissipative particle swarm optimization. IEEE Trans Evol Comput 17(4):577–587. (PMID: 10.1109/TEVC.2012.2218610)
      Palafox L, Noman N, Iba H (2013) Study on the use of evolutionary techniques for inference in gene regulatory networks. Nat Comput Beyond 6:82–92. (PMID: 10.1007/978-4-431-54394-7_7)
      Jereesh AS, Govindan VK (2013) A clonal based algorithm for the reconstruction of genetic network using S-system. Int J Res Eng Technol 02(08):44–50. (PMID: 10.15623/ijret.2013.0208006)
      Chowdhury AR, Chetty M, Vinh NX (2013) Inferring large scale genetic networks with S-system model. In: Proceedings of the 15th annual conference on genetic and evolutionary computation. 271–278.
      Jereesh AS, Govindan VK (2013) Gene regulatory network modelling using cuckoo search and S-system. Int J Adv Res Comput Sci Softw Eng 3(9):1231–1237.
      Jereesh AS, Govindan VK (2014) Clono–hybrid algorithm for the reconstruction of gene regulatory network using S-system. Int J Pure App Biosci 2(6):241–248.
      Zhan C, Li BY, Yeung LF (2015) Structural and practical identifiability analysis of S-system. IET Syst Biol 9(6):285–293. (PMID: 10.1049/iet-syb.2015.0014)
      Mandal S, Khan A, Saha G, Pal RK (2016) Reverse engineering of gene regulatory networks based on S-systems and bat algorithm. J Bioinforma Comput Biol 14(03):1650010. (PMID: 10.1142/S0219720016500104)
    • Contributed Indexing:
      Keywords: Bio-chemical system theory; Cardinality; Decoupling; Gene regulatory network; Microarray data; Optimization; Power law function; Regularization; S-system
    • Publication Date:
      Date Created: 20231006 Date Completed: 20231101 Latest Revision: 20231107
    • Publication Date:
      20231215
    • Accession Number:
      10.1007/978-1-0716-3461-5_8
    • Accession Number:
      37803116