Spatially resolved metabolomics and isotope tracing reveal dynamic metabolic responses of dentate granule neurons with acute stimulation.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Nature Country of Publication: Germany NLM ID: 101736592 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2522-5812 (Electronic) Linking ISSN: 25225812 NLM ISO Abbreviation: Nat Metab Subsets: MEDLINE
    • Publication Information:
      Original Publication: Berlin : Springer Nature, [2019]-
    • Subject Terms:
    • Abstract:
      Neuronal activity creates an intense energy demand that must be met by rapid metabolic responses. To investigate metabolic adaptations in the neuron-enriched dentate granule cell (DGC) layer within its native tissue environment, we employed murine acute hippocampal brain slices, coupled with fast metabolite preservation and followed by mass spectrometry (MS) imaging, to generate spatially resolved metabolomics and isotope-tracing data. Here we show that membrane depolarization induces broad metabolic changes, including increased glycolytic activity in DGCs. Increased glucose metabolism in response to stimulation is accompanied by mobilization of endogenous inosine into pentose phosphates via the action of purine nucleotide phosphorylase (PNP). The PNP reaction is an integral part of the neuronal response to stimulation, because inhibition of PNP leaves DGCs energetically impaired during recovery from strong activation. Performing MS imaging on brain slices bridges the gap between live-cell physiology and the deep chemical analysis enabled by MS.
      (© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)
    • Comments:
      Update of: Res Sq. 2023 Jul 25;:. (PMID: 37546759)
    • References:
      Shin, T. H. et al. Metabolome changes in cerebral ischemia. Cells 9, E1630 (2020). (PMID: 10.3390/cells9071630)
      Puig, B., Brenna, S. & Magnus, T. Molecular communication of a dying neuron in stroke. Int. J. Mol. Sci. 19, E2834 (2018). (PMID: 10.3390/ijms19092834)
      Taoufik, E. & Probert, L. Ischemic neuronal damage. Curr. Pharmacol. Des. 14, 3565–3573 (2008). (PMID: 10.2174/138161208786848748)
      Stopka, S. A. et al. Spatially resolved characterization of tissue metabolic compartments in fasted and high-fat diet livers. PLoS ONE 17, e0261803 (2022). (PMID: 36067168944789210.1371/journal.pone.0261803)
      Cohen, L. H. & Gusev, A. I. Small molecule analysis by MALDI mass spectrometry. Anal. Bioanal. Chem. 373, 571–586 (2002). (PMID: 1221973710.1007/s00216-002-1321-z)
      Tsai, Y.-H., Garrett, T. J., Carter, C. S. & Yost, R. A. Metabolomic analysis of oxidative and glycolytic skeletal muscles by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Imaging (MALDI MSI). J. Am. Soc. Mass Spectrom. 26, 915–923 (2015). (PMID: 25893271455394410.1007/s13361-015-1133-y)
      Sugiura, Y. et al. Visualization of in vivo metabolic flows reveals accelerated utilization of glucose and lactate in penumbra of ischemic heart. Sci. Rep. 6, 32361 (2016). (PMID: 27581923500766910.1038/srep32361)
      Kleinridders, A. et al. Regional differences in brain glucose metabolism determined by imaging mass spectrometry. Mol. Metab. 12, 113–121 (2018). (PMID: 29681509600190410.1016/j.molmet.2018.03.013)
      Wang, Z. et al. Spatial-resolved metabolomics reveals tissue-specific metabolic reprogramming in diabetic nephropathy by using mass spectrometry imaging. Acta Pharmacol. Sin. B 11, 3665–3677 (2021). (PMID: 10.1016/j.apsb.2021.05.013)
      Wang, L. et al. Spatially resolved isotope tracing reveals tissue metabolic activity. Nat. Methods 19, 223–230 (2022). (PMID: 3513224310.1038/s41592-021-01378-y)
      Wang, G. et al. Analyzing cell-type-specific dynamics of metabolism in kidney repair. Nat. Metab. 4, 1109–1118 (2022). (PMID: 36008550949986410.1038/s42255-022-00615-8)
      Dienel, G. A. Stop the rot. Enzyme inactivation at brain harvest prevents artifacts: a guide for preservation of the in vivo concentrations of brain constituents. J. Neurochem. 158, 1007–1031 (2021). (PMID: 3363601310.1111/jnc.15293)
      Lu, W. et al. Metabolite measurement: pitfalls to avoid and practices to follow. Annu. Rev. Biochem. 86, 277–304 (2017). (PMID: 28654323573409310.1146/annurev-biochem-061516-044952)
      Blatherwick, E. Q., Svensson, C. I., Frenguelli, B. G. & Scrivens, J. H. Localisation of adenine nucleotides in heat-stabilised mouse brains using ion mobility enabled MALDI imaging. Int. J. Mass Spectrom. 345–347, 19–27 (2013). (PMID: 10.1016/j.ijms.2013.02.004)
      Fox, P. T., Raichle, M. E., Mintun, M. A. & Dence, C. Nonoxidative glucose consumption during focal physiologic neural activity. Science 241, 462–464 (1988). (PMID: 326068610.1126/science.3260686)
      Madsen, P. L., Cruz, N. F., Sokoloff, L. & Dienel, G. A. Cerebral oxygen/glucose ratio is low during sensory stimulation and rises above normal during recovery: excess glucose consumption during stimulation is not accounted for by lactate efflux from or accumulation in brain tissue. J. Cereb. Blood Flow Metab. 19, 393–400 (1999). (PMID: 1019750910.1097/00004647-199904000-00005)
      Bak, L. K. et al. Neuronal glucose but not lactate utilization is positively correlated with NMDA-induced neurotransmission and fluctuations in cytosolic Ca 2+ levels. J. Neurochem. 109, 87–93 (2009). (PMID: 1939301310.1111/j.1471-4159.2009.05943.x)
      Hyder, F., Fulbright, R. K., Shulman, R. G. & Rothman, D. L. Glutamatergic function in the resting awake human brain is supported by uniformly high oxidative energy. J. Cereb. Blood Flow Metab. 33, 339–347 (2013). (PMID: 23299240358782310.1038/jcbfm.2012.207)
      Díaz-García, C. M. et al. Neuronal stimulation triggers neuronal glycolysis and not lactate uptake. Cell Metab. 26, 361–374 (2017). (PMID: 28768175555989610.1016/j.cmet.2017.06.021)
      Ghergurovich, J. M. et al. A small molecule G6PD inhibitor reveals immune dependence on pentose phosphate pathway. Nat. Chem. Biol. 16, 731–739 (2020). (PMID: 32393898731127110.1038/s41589-020-0533-x)
      Tozzi, M. G., Camici, M., Mascia, L., Sgarrella, F. & Ipata, P. L. Pentose phosphates in nucleoside interconversion and catabolism. FEBS J. 273, 1089–1101 (2006). (PMID: 1651967610.1111/j.1742-4658.2006.05155.x)
      Ipata, P. L., Camici, M., Micheli, V. & Tozz, M. G. Metabolic network of nucleosides in the brain. Curr. Top. Med. Chem. 11, 909–922 (2011). (PMID: 2140150210.2174/156802611795347555)
      Ipata, P. L. & Balestri, F. The functional logic of cytosolic 5′-nucleotidases. Curr. Med. Chem. 20, 4205–4216 (2013). (PMID: 2399231610.2174/0929867311320340002)
      Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014). (PMID: 25186741415260210.1523/JNEUROSCI.1860-14.2014)
      Pastor-Anglada, M. & Pérez-Torras, S. Emerging roles of nucleoside transporters. Front. Pharmacol. 9, 606 (2018). (PMID: 29928232599778110.3389/fphar.2018.00606)
      Lin, W. & Buolamwini, J. K. Synthesis, flow cytometric evaluation, and identification of highly potent dipyridamole analogues as equilibrative nucleoside transporter 1 inhibitors. J. Med. Chem. 50, 3906–3920 (2007). (PMID: 17636949253649210.1021/jm070311l)
      Wu, Z. et al. Neuronal activity-induced, equilibrative nucleoside transporter-dependent, somatodendritic adenosine release revealed by a GRAB sensor. Proc. Natl. Acad. Sci. USA 120, e2212387120 (2023). (PMID: 369961101008357410.1073/pnas.2212387120)
      Admyre, T. et al. Inhibition of AMP deaminase activity does not improve glucose control in rodent models of insulin resistance or diabetes. Chem. Biol. 21, 1486–1496 (2014). (PMID: 2545966110.1016/j.chembiol.2014.09.011)
      Li, G., Nakagome, I., Hirono, S., Itoh, T. & Fujiwara, R. Inhibition of adenosine deaminase (ADA)-mediated metabolism of cordycepin by natural substances. Pharmacol. Res. Perspect. 3, e00121 (2015). (PMID: 26038697444897510.1002/prp2.121)
      Mohlin, C., Säve, S., Nilsson, M. & Persson, K. Studies of the extracellular ATP-adenosine pathway in human urinary tract epithelial cells. Pharmacology 84, 196–202 (2009). (PMID: 1972998710.1159/000235908)
      Martínez-François, J. R. et al. BAD and KATP channels regulate neuron excitability and epileptiform activity. eLife 7, e32721 (2018). (PMID: 29368690578521010.7554/eLife.32721)
      Barry, J. A., Groseclose, M. R. & Castellino, S. Quantification and assessment of detection capability in imaging mass spectrometry using a revised mimetic tissue model. Bioanalysis 11, 1099–1116 (2019). (PMID: 3125110610.4155/bio-2019-0035)
      Källback, P. et al. Cross-validated matrix-assisted laser desorption/ionization mass spectrometry imaging quantitation protocol for a pharmaceutical drug and its drug-target effects in the brain using time-of-flight and Fourier transform ion cyclotron resonance analyzers. Anal. Chem. 92, 14676–14684 (2020). (PMID: 33086792766059310.1021/acs.analchem.0c03203)
      Woods, A. S. et al. Lipid/peptide/nucleotide separation with MALDI-ion mobility-TOF MS. Anal. Chem. 76, 2187–2195 (2004). (PMID: 1508072710.1021/ac035376k)
      Fernandez-Lima, F., Kaplan, D. A., Suetering, J. & Park, M. A. Gas-phase separation using a trapped ion mobility spectrometer. Int. J. Ion Mobil. Spectrom. 14, 93–98 (2011). (PMID: 10.1007/s12127-011-0067-8)
      Tian, H. et al. Multi-modal mass spectrometry imaging reveals single-cell metabolic states in mammalian liver. Preprint at bioRxiv https://doi.org/10.1101/2022.09.26.508878 (2022).
      Harriott, A. M., Takizawa, T., Chung, D. Y. & Chen, S.-P. Spreading depression as a preclinical model of migraine. J. Headache Pain. 20, 45 (2019). (PMID: 31046659673442910.1186/s10194-019-1001-4)
      Charles, A. C. & Baca, S. M. Cortical spreading depression and migraine. Nat. Rev. Neurol. 9, 637–644 (2013). (PMID: 2404248310.1038/nrneurol.2013.192)
      Aiba, I. & Noebels, J. L. Spreading depolarization in the brainstem mediates sudden cardiorespiratory arrest in mouse SUDEP models. Sci. Transl. Med. 7, 282ra46 (2015). (PMID: 25855492485213110.1126/scitranslmed.aaa4050)
      Gupta, S. et al. KL1 domain of longevity factor klotho mimics the metabolome of cognitive stimulation and enhances cognition in young and aging mice. J. Neurosci. 42, 4016–4025 (2022). (PMID: 35428698909777210.1523/JNEUROSCI.2458-21.2022)
      Lewin, E. & Bleck, V. Electroshock seizures in mice: effect on brain adenosine and its metabolites. Epilepsia 22, 577–581 (1981). (PMID: 728588310.1111/j.1528-1157.1981.tb04129.x)
      Barsotti, C. & Ipata, P. L. Metabolic regulation of ATP breakdown and of adenosine production in rat brain extracts. Int. J. Biochem. Cell Biol. 36, 2214–2225 (2004). (PMID: 1531346710.1016/j.biocel.2004.04.015)
      Sahlin, K. & Broberg, S. Adenine nucleotide depletion in human muscle during exercise: causality and significance of AMP deamination. Int. J. Sports Med. 11, S62–S67 (1990). (PMID: 236178110.1055/s-2007-1024856)
      Idström, J. P., Soussi, B., Elander, A. & Bylund-Fellenius, A. C. Purine metabolism after in vivo ischemia and reperfusion in rat skeletal muscle. Am. J. Physiol. 258, H1668–H1673 (1990). (PMID: 2360663)
      Gerlach, E., Deuticke, B. & Dreisbach, R. H. Der Nucleotid-Abbau im Herzmuskel bei Sauerstoffmangel und seine mögliche Bedeutung für die Coronardurchblutung. Naturwissenschaften 50, 228–229 (1963). (PMID: 10.1007/BF00639287)
      Carlson, J. D. & Fischer, A. G. Thyroid purine nucleoside phosphorylase. II. Kinetic model by alternate substrate and inhibition studies. Biochim. Biophys. Acta 566, 259–265 (1979). (PMID: 10576010.1016/0005-2744(79)90029-9)
      Erion, M. D., Stoeckler, J. D., Guida, W. C., Walter, R. L. & Ealick, S. E. Purine nucleoside phosphorylase. 2. Catalytic mechanism. Biochemistry 36, 11735–11748 (1997). (PMID: 930596310.1021/bi961970v)
      Barsotti, C., Pesi, R., Felice, F. & Ipata, P. L. The purine nucleoside cycle in cell-free extracts of rat brain: evidence for the occurrence of an inosine and a guanosine cycle with distinct metabolic roles. Cell. Mol. Life Sci. 60, 786–793 (2003). (PMID: 1278572510.1007/s00018-003-2371-x)
      Abt, E. R. et al. Purine nucleoside phosphorylase enables dual metabolic checkpoints that prevent T cell immunodeficiency and TLR7-associated autoimmunity. J. Clin. Invest. 132, e160852 (2022). (PMID: 35653193937438110.1172/JCI160852)
      Wang, T. et al. Inosine is an alternative carbon source for CD8 + -T-cell function under glucose restriction. Nat. Metab. 2, 635–647 (2020). (PMID: 32694789737162810.1038/s42255-020-0219-4)
      Markert, M. L. Purine nucleoside phosphorylase deficiency. Immunodefic. Rev. 3, 45–81 (1991). (PMID: 1931007)
      Alangari, A., Al-Harbi, A., Al-Ghonaium, A., Santisteban, I. & Hershfield, M. Purine nucleoside phosphorylase deficiency in two unrelated Saudi patients. Ann. Saudi Med. 29, 309–312 (2009). (PMID: 19584574284146010.4103/0256-4947.55320)
      Toro, A. & Grunebaum, E. TAT-mediated intracellular delivery of purine nucleoside phosphorylase corrects its deficiency in mice. J. Clin. Invest. 116, 2717–2726 (2006). (PMID: 16964310156034710.1172/JCI25052)
      Nascimento, F. P., Macedo-Júnior, S. J., Lapa-Costa, F. R., Cezar-Dos-Santos, F. & Santos, A. R. S. Inosine as a tool to understand and treat central nervous system disorders: a neglected actor? Front. Neurosci. 15, 703783 (2021). (PMID: 34504414842180610.3389/fnins.2021.703783)
      Liu, F. et al. Secondary degeneration reduced by inosine after spinal cord injury in rats. Spinal Cord. 44, 421–426 (2006). (PMID: 1631742110.1038/sj.sc.3101878)
      Chen, P., Goldberg, D. E., Kolb, B., Lanser, M. & Benowitz, L. I. Inosine induces axonal rewiring and improves behavioral outcome after stroke. Proc. Natl Acad. Sci. USA 99, 9031–9036 (2002). (PMID: 1208494112441810.1073/pnas.132076299)
      Soares Dos Santos Cardoso, F., Blanco Martinez, A. M. & Martins de Almeida, F. Inosine: a novel treatment for sciatic nerve injury. Neural Regen. Res. 16, 127–128 (2021). (PMID: 3278846610.4103/1673-5374.286969)
      Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013). (PMID: 23868258377779110.1038/nature12354)
      Díaz-García, C. M., Nathwani, N., Martínez-François, J. R. & Yellen, G. Delivery of AAV for expression of fluorescent biosensors in juvenile mouse hippocampus. Bio Protoc. 11, e4259 (2021). (PMID: 350879188720514)
      Miller, A. et al. Exploring metabolic configurations of single cells within complex tissue microenvironments. Cell Metab. 26, 788–800 (2017). (PMID: 2888995010.1016/j.cmet.2017.08.014)
      Van Noorden, C. J. & Frederiks, W. M. Enzyme Histochemistry: A Laboratory Manual of Current Methods Vol. 26 (Oxford Univ. Press, 1992).
      Wishart, D. S. et al. HMDB 5.0: the Human Metabolome Database for 2022. Nucleic Acids Res. 50, D622–D631 (2022). (PMID: 3498659710.1093/nar/gkab1062)
      Bittremieux, W. et al. Comparison of cosine, modified cosine, and neutral loss based spectrum alignment for discovery of structurally related molecules. J. Am. Soc. Mass Spectrom. 33, 1733–1744 (2022). (PMID: 3596054410.1021/jasms.2c00153)
      Ross, D. H., Cho, J. H. & Xu, L. Breaking down structural diversity for comprehensive prediction of ion-neutral collision cross sections. Anal. Chem. 92, 4548–4557 (2020). (PMID: 3209663010.1021/acs.analchem.9b05772)
      Gabelica, V. et al. Recommendations for reporting ion mobility mass spectrometry measurements. Mass Spectrom. Rev. 38, 291–320 (2019). (PMID: 30707468661804310.1002/mas.21585)
      Schwaiger-Haber, M. et al. Using mass spectrometry imaging to map fluxes quantitatively in the tumor ecosystem. Nat. Commun. 14, 2876 (2023). (PMID: 372083611019902410.1038/s41467-023-38403-x)
      Andersen, J. V. et al. Astrocyte metabolism of the medium-chain fatty acids octanoic acid and decanoic acid promotes GABA synthesis in neurons via elevated glutamine supply. Mol. Brain 14, 132 (2021). (PMID: 34479615841466710.1186/s13041-021-00842-2)
      Millard, P. et al. IsoCor: isotope correction for high-resolution MS labeling experiments. Bioinformatics 35, 4484–4487 (2019). (PMID: 3090318510.1093/bioinformatics/btz209)
      Mackay, G. M., Zheng, L., van den Broek, N. J. F. & Gottlieb, E. Analysis of cell metabolism using LC-MS and isotope tracers. Methods Enzymol. 561, 171–196 (2015). (PMID: 2635890510.1016/bs.mie.2015.05.016)
      Packer, M. R. et al. Raf promotes dimerization of the Ras G-domain with increased allosteric connections. Proc. Natl Acad. Sci. USA 118, e2015648118 (2021). (PMID: 33653954795835810.1073/pnas.2015648118)
      Harrison, J. A., Kelso, C., Pukala, T. L. & Beck, J. L. Conditions for analysis of native protein structures using uniform field drift tube ion mobility mass spectrometry and characterization of stable calibrants for TWIM-MS. J. Am. Soc. Mass Spectrom. 30, 256–267 (2019). (PMID: 3032426210.1007/s13361-018-2074-z)
      Sud, M. et al. Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res. 44, D463–D470 (2016). (PMID: 2646747610.1093/nar/gkv1042)
    • Grant Information:
      T32 EB025823 United States EB NIBIB NIH HHS; R37 NS102586 United States NS NINDS NIH HHS; R01 NS126248 United States NS NINDS NIH HHS; P30 EY012196 United States EY NEI NIH HHS; OT2 OD030544 United States OD NIH HHS; U2C DK119886 United States DK NIDDK NIH HHS; R01 NS102586 United States NS NINDS NIH HHS; U54 CA210180 United States CA NCI NIH HHS
    • Accession Number:
      0 (Isotopes)
    • Publication Date:
      Date Created: 20231005 Date Completed: 20231031 Latest Revision: 20240406
    • Publication Date:
      20240406
    • Accession Number:
      PMC10626993
    • Accession Number:
      10.1038/s42255-023-00890-z
    • Accession Number:
      37798473