Association between higher duodenal levels of the fructose carrier glucose transporter-5 and nonalcoholic fatty liver disease and liver fibrosis.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Blackwell Scientific Publications Country of Publication: England NLM ID: 8904841 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2796 (Electronic) Linking ISSN: 09546820 NLM ISO Abbreviation: J Intern Med Subsets: MEDLINE
    • Publication Information:
      Original Publication: Oxford : Blackwell Scientific Publications, c1989-
    • Subject Terms:
    • Abstract:
      Background: An increased dietary fructose intake has been shown to exert several detrimental metabolic effects and contribute to the pathogenesis of nonalcoholic fatty liver disease (NAFLD). An augmented intestinal abundance of the fructose carriers glucose transporter-5 (GLUT-5) and glucose transporter-2 (GLUT-2) has been found in subjects with obesity and type 2 diabetes. Herein, we investigated whether elevated intestinal levels of GLUT-5 and GLUT-2, resulting in a higher dietary fructose uptake, are associated with NAFLD and its severity.
      Methods: GLUT-5 and GLUT-2 protein levels were assessed on duodenal mucosa biopsies of 31 subjects divided into 2 groups based on ultrasound-defined NAFLD presence who underwent an upper gastrointestinal endoscopy.
      Results: Individuals with NAFLD exhibited increased duodenal GLUT-5 protein levels in comparison to those without NAFLD, independently of demographic and anthropometric confounders. Conversely, no difference in duodenal GLUT-2 abundance was observed amongst the two groups. Univariate correlation analyses showed that GLUT-5 protein levels were positively related with body mass index, waist circumference, fasting and 2 h post-load insulin concentrations, and insulin resistance (IR) degree estimated by homeostatic model assessment of IR (r = 0.44; p = 0.02) and liver IR (r = 0.46; p = 0.03) indexes. Furthermore, a positive relationship was observed between duodenal GLUT-5 abundance and serum uric acid concentrations (r = 0.40; p = 0.05), a product of fructose metabolism implicated in NAFLD progression. Importantly, duodenal levels of GLUT-5 were positively associated with liver fibrosis risk estimated by NAFLD fibrosis score.
      Conclusion: Increased duodenal GLUT-5 levels are associated with NAFLD and liver fibrosis. Inhibition of intestinal GLUT-5-mediated fructose uptake may represent a strategy for prevention and treatment of NAFLD.
      (© 2023 The Association for the Publication of the Journal of Internal Medicine.)
    • References:
      Younossi ZM, Golabi P, Paik JM, Henry A, Van Dongen C, Henry L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology. 2023;77(4):1335-1347.
      Younossi Z, Tacke F, Arrese M, Chander Sharma B, Mostafa I, Bugianesi E, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology. 2019;69(6):2672-2682.
      Stefan N, Cusi K. A global view of the interplay between non-alcoholic fatty liver disease and diabetes. Lancet Diabetes Endocrinol. 2022;10(4):284-296.
      Lim JS, Mietus-Snyder M, Valente A, Schwarz JM, Lustig RH. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol. 2010;7(5):251-264.
      Jegatheesan P, De Bandt JP. Fructose and NAFLD: the multifaceted aspects of fructose metabolism. Nutrients. 2017;9(3):230.
      Coronati M, Baratta F, Pastori D, Ferro D, Angelico F, Del Ben M. Added Fructose in non-alcoholic fatty liver disease and in metabolic syndrome: a narrative review. Nutrients. 2022;14(6):1127.
      Jung S, Bae H, Song WS, Jang C. Dietary fructose and fructose-induced pathologies. Annu Rev Nutr. 2022;42:45-66.
      Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009;119(5):1322-1334.
      Schwarz J-M, Noworolski SM, Wen MJ, Dyachenko A, Prior JL, Weinberg ME, et al. Effect of a high-fructose weight-maintaining diet on lipogenesis and liver fat. J Clin Endocrinol Metab. 2015;100(6):2434-2442.
      Montonen J, Jarvinen R, Knekt P, Heliovaara M, Reunanen A. Consumption of sweetened beverages and intakes of fructose and glucose predict type 2 diabetes occurrence. J Nutr. 2007;137(6):1447-1454.
      Yu S, Li C, Ji G, Zhang L. The contribution of dietary fructose to non-alcoholic fatty liver disease. Front Pharmacol. 2021;12:783393.
      Thuy S, Ladurner R, Volynets V, Wagner S, Strahl S, Königsrainer A, et al. Nonalcoholic fatty liver disease in humans is associated with increased plasma endotoxin and plasminogen activator inhibitor 1 concentrations and with fructose intake. J Nutr. 2008;138(8):1452-1455.
      Ouyang X, Cirillo P, Sautin Y, McCall S, Bruchette JL, Diehl AM, et al. Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J Hepatol. 2008;48(6):993-999.
      Douard V, Ferraris RP. Regulation of the fructose transporter GLUT5 in health and disease. Am J Physiol Endocrinol Metab. 2008;295(2):E227-E237.
      Ferraris RP, Choe JY, Patel CR. Intestinal absorption of fructose. Annu Rev Nutr. 2018;38:41-67.
      Merino B, Fernández-Díaz CM, Cózar-Castellano I, Perdomo G. Intestinal fructose and glucose metabolism in health and disease. Nutrients. 2019;12(1):94.
      Jang C, Hui S, Lu W, Cowan AJ, Morscher RJ, Lee G, et al. The small intestine converts dietary fructose into glucose and organic acids. Cell Metab. 2018;27(2):351-361. e3.
      Hannou SA, Haslam DE, McKeown NM, Herman MA. Fructose metabolism and metabolic disease. J Clin Investig. 2018;128(2):545-555.
      Federico A, Rosato V, Masarone M, Torre P, Dallio M, Romeo M, et al. The role of fructose in non-alcoholic steatohepatitis: old relationship and new insights. Nutrients. 2021;13(4):1314.
      Park SH, Helsley RN, Fadhul T, Willoughby JLS, Noetzli L, Tu HC, et al. Fructose induced KHK-C can increase ER stress independent of its effect on lipogenesis to drive liver disease in diet-induced and genetic models of NAFLD. Metabolism. 2023;145:155591.
      Kawasaki T, Akanuma H, Yamanouchi T. Increased fructose concentrations in blood and urine in patients with diabetes. Diabetes Care. 2002;25(2):353-357.
      Sullivan JS, Le MT, Pan Z, Rivard C, Love-Osborne K, Robbins K, et al. Oral fructose absorption in obese children with non-alcoholic fatty liver disease. Pediatr Obes. 2015;10(3):188-195.
      Dyer J, Wood IS, Palejwala A, Ellis A, Shirazi-Beechey SP. Expression of monosaccharide transporters in intestine of diabetic humans. Am J Physiol Gastrointest Liver Physiol. 2002;282:G241-G248.
      Ait-Omar A, Monteiro-Sepulveda M, Poitou C, Le Gall M, Cotillard A, Gilet J, et al. GLUT2 accumulation in enterocyte apical and intracellular membranes: a study in morbidly obese human subjects and ob/ob and high fat-fed mice. Diabetes. 2011;60(10):2598-2607.
      Hasan NM, Johnson KF, Yin J, Baetz NW, Fayad L, Sherman V, et al. Intestinal stem cell-derived enteroids from morbidly obese patients preserve obesity-related phenotypes: elevated glucose absorption and gluconeogenesis. Mol Metab. 2021;44:101129.
      Fiorentino TV, Suraci E, Arcidiacono GP, Cimellaro A, Mignogna C, Presta I, et al. Duodenal sodium/glucose cotransporter 1 expression under fasting conditions is associated with postload hyperglycemia. J Clin Endocrinol Metab. 2017;102(11):3979-3989.
      Fiorentino TV, De Vito F, Suraci E, Marasco R, Hribal ML, Luzza F, et al. Obesity and overweight are linked to increased sodium-glucose cotransporter 1 and glucose transporter 5 levels in duodenum. Obesity (Silver Spring). 2023;31(3):724-731.
      Fiorentino TV, De Vito F, Suraci E, Marasco R, Catalano F, Andreozzi F, et al. Augmented duodenal levels of sodium/glucose co-transporter 1 are associated with higher risk of nonalcoholic fatty liver disease and noninvasive index of liver fibrosis. Diabetes Res Clin Pract. 2022;185:109789.
      American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020;43:S14-S31.
      Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412-419.
      Vangipurapu J, Stančáková A, Kuulasmaa T, Paananen J, Kuusisto J, Ferrannini E, et al. A novel surrogate index for hepatic insulin resistance. Diabetologia. 2011;54:540-543.
      Angulo P, Hui JM, Marchesini G, Bugianesi E, George J, Farrell GC, et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology. 2007;45:846-854.
      McPherson S, Hardy T, Dufour JF, Petta S, Romero-Gomez M, Allison M, et al. Age as a confounding factor for the accurate non-invasive diagnosis of advanced NAFLD fibrosis. Am J Gastroenterol. 2017;112:740-751.
      Abdelmalek MF, Suzuki A, Guy CD, Unalp-Arida A, Colvin R, Johnson RJ, et al. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology. 2010;51(6):1961-1971.
      Mosca A, Nobili V, De Vito R, Crudele A, Scorletti E, Villani A, et al. Serum uric acid concentrations and fructose consumption are independently associated with NASH in children and adolescents. J Hepatol. 2017;66(5):1031-1036.
      Hazlehurst JM, Woods C, Marjot T, Cobbold JF, Tomlinson JW. Non-alcoholic fatty liver disease and diabetes. Metabolism. 2016;65(8):1096-1108.
      Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 2016;65(8):1038-1048.
      Duca FA, Waise TMZ, Peppler WT, Lam TKT. The metabolic impact of small intestinal nutrient sensing. Nat Commun. 2021;12(1):903.
      Song Q, Zhang X. The role of gut-liver axis in gut microbiome dysbiosis associated NAFLD and NAFLD-HCC. Biomedicines. 2022;10(3):524.
      De Vito F, Cassano V, Mancuso E, Succurro E, Hribal ML, Sciacqua A, et al. Higher circulating levels of proneurotensin are associated with increased risk of incident NAFLD. J Intern Med. 2023. https://doi.org/10.1111/joim.13651. [Epub ahead of print].
      Nguyen NQ, Debreceni TL, Bambrick JE, Chia B, Wishart J, Deane AM, et al. Accelerated intestinal glucose absorption in morbidly obese humans: relationship to glucose transporters, incretin hormones, and glycemia. J Clin Endocrinol Metab. 2015;100(3):968-976.
      Burant CF, Flink S, DePaoli AM, Chen J, Lee WS, Hediger MA, et al. Small intestine hexose transport in experimental diabetes: increased transporter mRNA and protein expression in enterocytes. J Clin Invest. 1994;93:578-585.
      Softic S, Stanhope KL, Boucher J, Divanovic S, Lanaspa MA, Johnson RJ, et al. Fructose and hepatic insulin resistance. Crit Rev Clin Lab Sci. 2020;57(5):308-322.
      Zhu Y, Hu Y, Huang T, Zhang Y, Li Z, Luo C, et al. High uric acid directly inhibits insulin signalling and induces insulin resistance. Biochem Biophys Res Commun. 2014;447:707-714.
      Wan X, Xu C, Lin Y, Lu C, Li D, Sang J, et al. Uric acid regulates hepatic steatosis and insulin resistance through the NLRP3 inflammasome-dependent mechanism. J Hepatol. 2016;64(4):925-932.
      Mahady SE, Macaskill P, Craig JC, Wong GLH, Chu WCW, Chan HLY, et al. Diagnostic accuracy of noninvasive fibrosis scores in a population of individuals with a low prevalence of fibrosis. Clin Gastroenterol Hepatol. 2017;15:1453-1460.
      Hajduch E, Litherland GJ, Turban S, Brot-Laroche E, Hundal HS. Insulin regulates the expression of the GLUT5 transporter in L6 skeletal muscle cells. FEBS Lett. 2003;549(1-3):77-82.
    • Grant Information:
      Grant SID-Fondazione Diabete Ricerca 2020 Fondazione Diabete Ricerca; Grant di ricerca SIMI 2022 Società Italiana di Medicina Interna
    • Contributed Indexing:
      Keywords: NAFLD; duodenal GLUT-5; fructose; insulin resistance; liver fibrosis
    • Accession Number:
      30237-26-4 (Fructose)
      0 (Glucose Transporter Type 5)
      268B43MJ25 (Uric Acid)
    • Publication Date:
      Date Created: 20231005 Date Completed: 20240115 Latest Revision: 20240115
    • Publication Date:
      20240115
    • Accession Number:
      10.1111/joim.13729
    • Accession Number:
      37797237