Menu
×
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 1 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
2 p.m. - 6 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 1 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
2 p.m. - 6 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Microbial P450 repertoire (P450ome) and its application feasibility in pharmaceutical industry, chemical industry, and environmental protection.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Wang Y;Wang Y; Pan H; Pan H; Wang F; Wang F; Shen C; Shen C; Shen C
- Source:
Biotechnology and bioengineering [Biotechnol Bioeng] 2024 Jan; Vol. 121 (1), pp. 7-25. Date of Electronic Publication: 2023 Sep 28.- Publication Type:
Journal Article; Review; Research Support, Non-U.S. Gov't- Language:
English - Source:
- Additional Information
- Source: Publisher: Wiley Country of Publication: United States NLM ID: 7502021 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-0290 (Electronic) Linking ISSN: 00063592 NLM ISO Abbreviation: Biotechnol Bioeng Subsets: MEDLINE
- Publication Information: Publication: <2005->: Hoboken, NJ : Wiley
Original Publication: New York, Wiley. - Subject Terms:
- Abstract: Cytochrome P450s (CYPs) are heme-thiolated enzymes that catalyze the oxidation of C-H bonds in a regio- and stereo-selective manner. CYPs are widely present in the biological world. With the completion of more biological genome sequencing, the number and types of P450 enzymes have increased rapidly. P450 in microorganisms is easy to clone and express, rich in catalytic types, and strong in substrate adaptability, which has good application potential. Although the number of P450 enzymes found in microorganisms is huge, the function of most of the microorganism P450s has not been studied, and it contains a large number of excellent biocatalysts to be developed. This review is based on the P450 groups in microorganisms. First, it reviews the distribution of P450 groups in different microbial species, and then studies the application of microbial P450 enzymes in the pharmaceutical industry, chemical industry and environmental pollutant treatment in recent years. And focused on the application fields of P450 enzymes of different families to guide the selection of suitable P450s from the huge P450 library. In view of the current shortcomings of microbial P450 in the application process, the final solution is the most likely to assist the application of P450 enzymes in large-scale, that is, whole cell transformation combined with engineering, fusion P450 combined with immobilization technology.
(© 2023 Wiley Periodicals LLC.) - References: Abdulmughni, A., Jóźwik, I. K., Putkaradze, N., Brill, E., Zapp, J., Thunnissen, A. W., Hannemann, F., & Bernhardt, R. (2017). Characterization of cytochrome P450 CYP109E1 from Bacillus megaterium as a novel vitamin D3 hydroxylase. Journal of Biotechnology, 243, 38-47.
Ahsan, M., Patil, M., Jeon, H., Sung, S., Chung, T., & Yun, H. (2018). Biosynthesis of Nylon 12 monomer, ω-Aminododecanoic acid using artificial self-sufficient P450, AlkJ and ω-TA. Catalysts, 8(9), 400.
Ali, H. S., Henchman, R. H., & de Visser, S. P. (2020). Cross-linking of aromatic phenolate groups by cytochrome P450 enzymes: A model for the biosynthesis of vancomycin by OxyB. Organic & Biomolecular Chemistry, 18, 4610-4618.
Armbruster, J., Steinmassl, M., Müller Bogotá, C. A., Berg, G., Nidetzky, B., & Dennig, A. (2020). P450Jα: A new, robust and α-selective fatty acid hydroxylase displaying unexpected 1-alkene formation. Chemistry - A European Journal, 26(68), 15910-15921.
Bähr, S., Brinkmann-Chen, S., Garcia-Borràs, M., Roberts, J. M., Katsoulis, D. E., Houk, K. N., & Arnold, F. H. (2020). Selective enzymatic oxidation of Silanes to Silanols. Angewandte Chemie International Edition, 59(36), 15507-15511.
Bai, X., Guo, H., Chen, D., Yang, Q., Tao, J., & Liu, W. (2020). Isolation and structure determination of two new Nosiheptide type compounds provide insights into the function of the cytochrome P450 oxygenase NocV in nocathiacin biosynthesis. Organic Chemistry Frontiers, 7, 584-589.
Bauer, D., Zachos, I., & Sieber, V. (2020). Production of propene from n-butanol: A three-step cascade utilizing the cytochrome P450 fatty acid decarboxylase OleTJE. ChemBioChem, 21(22), 3273-3281.
Başlar, M. S., Sakallı, T., Güralp, G., Kestevur Doğru, E., Haklı, E., & Surmeli, N. B. (2020). Development of an improved Amplex Red peroxidation activity assay for screening cytochrome P450 variants and identification of a novel mutant of the thermophilic CYP119. JBIC, Journal of Biological Inorganic Chemistry, 25(7), 949-962.
Bell, S. G., Tan, A. B. H., Johnson, E. O. D., & Wong, L. L. (2009). Selective oxidative demethylation of veratric acid to vanillic acid by CYP199A4 from Rhodopseudomonas palustris HaA2. Molecular BioSystems, 6(1), 206-214.
Bracco, P., Wijma, H. J., Nicolai, B., Buitrago, J. A. R., Klünemann, T., Vila, A., Schrepfer, P., Blankenfeldt, W., Janssen, D. B., & Schallmey, A. (2021). CYP154C5 regioselectivity in steroid hydroxylation explored by substrate modifications and protein engineering*. ChemBioChem, 22(6), 1099-1110.
Buathong, P., Boonvitthya, N., Truan, G., & Chulalaksananukul, W. (2020). Whole-cell biotransformation of 1,12-dodecanedioic acid from coconut milk factory wastewater by recombinant CYP52A17SS expressing Saccharomyces cerevisiae. Processes, 8(8), 969.
Chauhan, K., Sengar, P., Juarez-Moreno, K., Hirata, G. A., & Vazquez-Duhalt, R. (2020). Camouflaged, activatable and therapeutic tandem bionanoreactors for breast cancer theranosis. Journal of Colloid and Interface Science, 580, 365-376.
Chen, J., Tang, J., Xi, Y., Dai, Z., Bi, C., Chen, X., Fan, F., & Zhang, X. (2019). Production of 14α-hydroxysteroids by a recombinant Saccharomyces cerevisiae biocatalyst expressing of a fungal steroid 14α-hydroxylation system. Applied Microbiology and Biotechnology, 103(20), 8363-8374.
Chen, W., Lee, M. K., Jefcoate, C., Kim, S. C., Chen, F., & Yu, J. H. (2014). Fungal cytochrome p450 monooxygenases: Their distribution, structure, functions, family expansion, and evolutionary origin. Genome Biology and Evolution, 6(7), 1620-1634.
Chowdhury, A. S., Ali, H. S., Faponle, A. S., & de Visser, S. P. (2020). How external perturbations affect the chemoselectivity of substrate activation by cytochrome P450 OleTJE. Physical Chemistry Chemical Physics, 22(46), 27178-27190.
Córdova, P., Gonzalez, A. M., Nelson, D. R., Gutiérrez, M. S., Baeza, M., Cifuentes, V., & Alcaíno, J. (2017). Characterization of the cytochrome P450 monooxygenase genes (P450ome) from the carotenogenic yeast xanthophyllomyces dendrorhous. BMC Genomics, 18, 540.
Dangi, B., Kim, K. H., Kang, S. H., & Oh, T. J. (2018). Tracking down a new steroid-hydroxylating promiscuous cytochrome P450: CYP154C8 from streptomyces sp. W2233-SM. ChemBioChem, 19(10), 1066-1077.
Dangi, B., Lee, C. W., Kim, K. H., Park, S. H., Yu, E. J., Jeong, C. S., Park, H., Lee, J. H., & Oh, T. J. (2019). Characterization of two steroid hydroxylases from different streptomyces spp. and their ligand-bound and -unbound crystal structures. The FEBS Journal, 286(9), 1683-1699.
Dangi, B., & Oh, T. J. (2019). Bacterial CYP154C8 catalyzes carbon-carbon bond cleavage in steroids. FEBS Letters, 593(1), 67-79.
Day, A. J., Lee, J. H. Z., Phan, Q. D., Lam, H. C., Ametovski, A., Sumby, C. J., Bell, S. G., & George, J. H. (2019). Biomimetic and biocatalytic synthesis of bruceol. Angewandte Chemie International Edition, 58(5), 1427-1431.
Ensari, Y., de Almeida Santos, G., Ruff, A. J., & Schwaneberg, U. (2020). Engineered P450 BM3 and cpADH5 coupled cascade reaction for β-oxo fatty acid methyl ester production in whole cells. Enzyme and Microbial Technology, 138, 109555.
Furuya, T., Arai, Y., & Kino, K. (2012). Biotechnological production of caffeic acid by bacterial cytochrome P450 CYP199A2. Applied and Environmental Microbiology, 78(17), 6087-6094.
Gómez, C., Olano, C., Palomino-Schätzlein, M., Pineda-Lucena, A., Carbajo, R. J., Braña, A. F., Méndez, C., & Salas, J. A. (2012). Novel compounds produced by streptomyces lydicus NRRL 2433 engineered mutants altered in the biosynthesis of streptolydigin. The Journal of antibiotics, 65(7), 341-348.
Greule, A., Izoré, T., Iftime, D., Tailhades, J., Schoppet, M., Zhao, Y., Peschke, M., Ahmed, I., Kulik, A., Adamek, M., Goode, R. J. A., Schittenhelm, R. B., Kaczmarski, J. A., Jackson, C. J., Ziemert, N., Krenske, E. H., De Voss, J. J., Stegmann, E., & Cryle, M. J. (2019). Kistamicin biosynthesis reveals the biosynthetic requirements for production of highly crosslinked glycopeptide antibiotics. Nature Communications, 10(1), 2613.
Grobe, S., Badenhorst, C. P. S., Bayer, T., Hamnevik, E., Wu, S., Grathwol, C. W., Link, A., Koban, S., Brundiek, H., Großjohann, B., & Bornscheuer, U. T. (2021). Engineering regioselectivity of a P450 monooxygenase enables the synthesis of ursodeoxycholic acid via 7β-Hydroxylation of lithocholic acid. Angewandte Chemie International Edition, 60(2), 753-757.
Grobe, S., Wszołek, A., Brundiek, H., Fekete, M., & Bornscheuer, U. T. (2020). Highly selective bile acid hydroxylation by the multifunctional bacterial P450 monooxygenase CYP107D1 (OleP). Biotechnology Letters, 42(5), 819-824.
Hammerer, L., Friess, M., Cerne, J., Fuchs, M., Steinkellner, G., Gruber, K., Vanhessche, K., Plocek, T., Winkler, C. K., & Kroutil, W. (2019). Controlling the regioselectivity of fatty acid hydroxylation (C10) at α- and β-Position by CYP152A1 (P450Bsβ) variants. ChemCatChem, 11(22), 5642-5649.
Haslinger, K., & Prather, K. L. J. (2020). Heterologous caffeic acid biosynthesis in Escherichia coli is affected by choice of tyrosine ammonia lyase and redox partners for bacterial cytochrome P450. Microbial Cell Factories, 19(1), 26.
Hernandez-Martinez, F., Briones-Roblero, C. I., Nelson, D. R., Rivera-Orduna, F. N., & Zuniga, G. (2016). Cytochrome P450 complement (CYPome) of candida oregonensis, a gut-associated yeast of bark beetle, dendroctonus rhizophagus. Fungal Biology, 120(9), 13.
Hilberath, T., Windeln, L. M., Decembrino, D., Le-Huu, P., Bilsing, F. L., & Urlacher, V. B. (2020). Two-step screening for identification of drug-metabolizing bacterial cytochromes P450 with diversified selectivity. ChemCatChem, 12, 1710-1719.
Honda, Y., Nanasawa, K., & Fujii, H. (2018). Coexpression of 5-Aminolevulinic acid synthase gene facilitates heterologous production of thermostable cytochrome P450, CYP119, in holo form in Escherichia coli. ChemBioChem, 19(20), 2156-2159.
Hoschek, A., Toepel, J., Hochkeppel, A., Karande, R., Bühler, B., & Schmid, A. (2019). Light-Dependent and Aeration-Independent Gram-Scale hydroxylation of cyclohexane to cyclohexanol by CYP450 harboring synechocystis sp. PCC 6803. Biotechnology Journal, 14(8), 1800724.
Hsieh, S. C., Wang, J. H., Lai, Y. C., Su, C. Y., & Lee, K. T. (2018). Production of 1-Dodecanol, 1-Tetradecanol, and 1,12-Dodecanediol through whole-cell biotransformation in Escherichia coli. Applied and Environmental Microbiology, 84(4), e01806-17.
Hussain, R., Yadav, R., Ahmed, M., Khan, T. A., Kumar, D., & Akhter, Y. (2020). Interplay between two spin states determines the hydroxylation catalyzed by P450 monooxygenase from trichoderma brevicompactum. Journal of Computational Chemistry, 41(14), 1330-1336.
Iizaka, Y., Kanai, H., Suzuki, T., Maruyama, Y., Kurita, M., Sano, M., Watanabe, A., Fukumoto, A., Saito, R., & Anzai, Y. (2020). Artificial control of the multistep oxidation reactions catalyzed by the cytochrome P450 enzyme RosC. Applied Microbiology and Biotechnology, 104(8), 3403-3415.
Ilie, A., Harms, K., & Reetz, M. T. (2018). P450-catalyzed regio- and stereoselective oxidative hydroxylation of 6-Iodotetralone: Preparative-Scale synthesis of a key intermediate for Pd-catalyzed transformations. The Journal of Organic Chemistry, 83(14), 7504-7508.
Isin, E. M., & Guengerich, F. P. (2007). Complex reactions catalyzed by cytochrome P450 enzymes. Biochim Biophys Acta, 1770(3), 314-329.
Jia, Y., Eltoukhy, A., Wang, J., Li, X., Hlaing, T. S., Aung, M. M., Nwe, M. T., Lamraoui, I., & Yan, Y. (2020). Biodegradation of bisphenol A by sphingobium sp. YC-JY1 and the essential role of cytochrome P450 monooxygenase. International Journal of Molecular Sciences, 21(10), 3588.
Jiang, G., Zhang, Y., Powell, M. M., Hylton, S. M., Hiller, N. W., Loria, R., & Ding, Y. (2019). A promiscuous cytochrome P450 hydroxylates aliphatic and aromatic C-H bonds of aromatic 2,5-diketopiperazines. ChemBioChem, 20(8), 1068-1077.
Jiang, Y., Li, Z., Wang, C., Zhou, Y. J., Xu, H., & Li, S. (2019). Biochemical characterization of three new α-olefin-producing P450 fatty acid decarboxylases with a halophilic property. Biotechnology for Biofuels, 12, 79.
Jiang, Y., Wang, C., Ma, N., Chen, J., Liu, C., Wang, F., Xu, J., & Cong, Z. (2020). Regioselective aromatic O-demethylation with an artificial P450BM3 peroxygenase system. Catalysis Science & Technology, 10, 5.
Jóźwik, I. K., Kiss, F. M., Gricman, Ł., Abdulmughni, A., Brill, E., Zapp, J., Pleiss, J., Bernhardt, R., & Thunnissen, A. M. W. H. (2016). Structural basis of steroid binding and oxidation by the cytochrome P450 CYP109E1 from bacillus megaterium. The FEBS Journal, 283(22), 4128-4148.
Karande, R., Salamanca, D., Schmid, A., & Buehler, K. (2018). Biocatalytic conversion of cycloalkanes to lactones using an in-vivo cascade in Pseudomonas taiwanensis VLB120. Biotechnology and Bioengineering, 115(2), 312-320.
Karasawa, M., Stanfield, J. K., Yanagisawa, S., Shoji, O., & Watanabe, Y. (2018). Whole-cell biotransformation of benzene to phenol catalysed by intracellular cytochrome P450BM3 activated by external additives. Angewandte Chemie International Edition, 57(38), 12264-12269.
Khumalo, M. J., Nzuza, N., Padayachee, T., Chen, W., Yu, J. H., Nelson, D. R., & Syed, K. (2020). Comprehensive analyses of cytochrome P450 monooxygenases and secondary metabolite biosynthetic gene clusters in Cyanobacteria. International Journal of Molecular Sciences, 21(2), 656.
Klenk, J. M., Dubiel, P., Sharma, M., Grogan, G., & Hauer, B. (2019a). Characterization and structure-guided engineering of the novel versatile terpene monooxygenase CYP109Q5 from chondromyces apiculatus DSM436. Microbial Biotechnology, 12(2), 377-391.
Klenk, J. M., Fischer, M. P., Dubiel, P., Sharma, M., Rowlinson, B., Grogan, G., & Hauer, B. (2019b). Identification and characterization of cytochrome P450 1232A24 and 1232F1 from Arthrobacter sp. and their role in the metabolic pathway of papaverine. Journal of Biochemistry, 166(1), 51-66.
Lamb, D. C., Ikeda, H., Nelson, D. R., Ishikawa, J., Skaug, T., Jackson, C., Omura, S., Waterman, M. R., & Kelly, S. L. (2003). Cytochrome P450 complement (CYPome) of the avermectin-producer Streptomyces avermitilis and comparison to that of Streptomyces coelicolor A3(2). Biochemical and Biophysical Research Communications, 307, 610-619.
Lamb, D. C., Skaug, T., Song, H. L., Jackson, C. J., Podust, L. M., Waterman, M. R., Kell, D. B., Kelly, D. E., & Kelly, S. L. (2002). The cytochrome P450 complement (CYPome) of Streptomyces coelicolor A3(2). Journal of Biological Chemistry, 277(27), 24000-24005.
Lee, C. F., Chen, L. X., Chiang, C. Y., Lai, C. Y., & Lin, H. C. (2019a). The biosynthesis of norsesquiterpene aculenes requires three cytochrome P450 enzymes to catalyze a stepwise demethylation process. Angewandte Chemie-International Edition in English, 58(51), 18414-18418.
Lee, J. H. Z., Wong, S. H., Stok, J. E., Bagster, S. A., Beckett, J., Clegg, J. K., Brock, A. J., De Voss, J. J., & Bell, S. G. (2019b). Selective hydroxylation of 1,8- and 1,4-cineole using bacterial P450 variants. Archives of Biochemistry and Biophysics, 663, 54-63.
Li, A., Acevedo-Rocha, C. G., D'Amore, L., Chen, J., Peng, Y., Garcia-Borràs, M., Gao, C., Zhu, J., Rickerby, H., Osuna, S.andZhou, J., & Reetz, M. T. (2020). Regio- and stereoselective steroid hydroxylation at C7 by cytochrome P450 monooxygenase mutants. Angewandte Chemie International Edition, 59(30), 12499-12505.
Li, N., Yao, L., He, Q., Qiu, J., Cheng, D., Ding, D., Tao, Q., He, J., & Jiang, J. (2018). 3,6-Dichlorosalicylate catabolism is initiated by the DsmABC cytochrome P450 monooxygenase system in Rhizorhabdus dicambivorans Ndbn-20. Applied and Environmental Microbiology, 84(4), e02133-17.
Li, Q., Shi, L., Liu, Y., Guan, S., Zhang, S., Cai, B., & Rong, S. (2021). Improved 11α-hydroxycanrenone production by modification of cytochrome P450 monooxygenase gene in Aspergillus ochraceus. Acta Pharmaceutica (Zagreb, Croatia), 71(1), 99-114.
Liu, J., Xie, X., & Li, S.-M. (2020). Increasing cytochrome P450 enzyme diversity by identification of two distinct cyclodipeptide dimerases. Chemical Communications, 56(75), 11042-11045.
Liu, L., Yao, Q., Ma, Z., Ikeda, H., Fushinobu, S., & Xu, L.-H. (2016). Hydroxylation of flavanones by cytochrome P450 105D7 from Streptomyces avermitilis. Journal of Molecular Catalysis B: Enzymatic, 132, 91-97.
Liu, X., Li, F., Sun, T., Guo, J., Zhang, X., Zheng, X., Du, L., Zhang, W., Ma, L., & Li, S. (2022). Three pairs of surrogate redox partners comparison for Class I cytochrome P450 enzyme activity reconstitution. Communications Biology, 5(1), 791.
Lu, W., Chen, X., Feng, J., Bao, Y. J., Wang, Y., Wu, Q., & Zhu, D. (2018). A fungal P450 enzyme from thanatephorus cucumeris with steroid hydroxylation capabilities. Applied and Environmental Microbiology, 84(13), e00503-18.
Lu, W., Feng, J., Chen, X., Bao, Y.-J., Wang, Y., Wu, Q., Ma, Y., & Zhu, D. (2019). Distinct regioselectivity of fungal P450 enzymes for steroidal hydroxylation. Applied and Environmental Microbiology, 85(18), 13.
Luelf, U. J., Böhmer, L. M., Li, S., & Urlacher, V. B. (2023). Effect of chromosomal integration on catalytic performance of a multi-component P450 system in Escherichia coli. Biotechnology and Bioengineering, 120(7), 1762-1772.
Ma, B., Wang, Q., Han, B. N., Ikeda, H., Zhang, C., & Xu, L. H. (2021). Hydroxylation, epoxidation, and dehydrogenation of capsaicin by a microbial promiscuous cytochrome P450 105D7. Chemistry & Biodiversity, 18(4), 2000910.
Ma, B., Wang, Q., Ikeda, H., Zhang, C., & Xu, L.-H. (2019). Hydroxylation of steroids by a microbial Substrate-Promiscuous P450 cytochrome (CYP105D7): Key arginine residues for rational design. Applied and Environmental Microbiology, 85(23), 14.
Ma, M., Bell, S. G., Yang, W., Hao, Y., Rees, N. H., Bartlam, M., Zhou, W., Wong, L.-L., & Rao, Z. (2011). Structural analysis of CYP101C1 from Novosphingobium aromaticivorans DSM12444. ChemBioChem, 12(1), 88-99.
Makino, T., Katsuyama, Y., Otomatsu, T., Misawa, N., & Ohnishi, Y. (2014). Regio- and stereospecific hydroxylation of various steroids at the 16α position of the D ring by the Streptomyces griseus cytochrome P450 CYP154C3. Applied and Environmental Microbiology, 80(4), 1371-1379.
Malinga, N. A., Nzuza, N., Padayachee, T., Syed, P. R., Karpoormath, R., Gront, D., Nelson, D. R., & Syed, K. (2022). An unprecedented number of cytochrome P450s are involved in secondary metabolism in salinispora species. Microorganisms, 10(5), 871.
Manning, J., Tavanti, M., Porter, J. L., Kress, N., De Visser, S. P., Turner, N. J., & Flitsch, S. L. (2019). Regio- and enantio-selective chemo-enzymatic C-H-lactonization of decanoic acid to (S)-δ-Decalactone. Angewandte Chemie (International ed. in English), 58(17), 5668-5671.
Maseme, M. J., Pennec, A., van Marwijk, J., Opperman, D. J., & Smit, M. S. (2020). CYP505E3: A novel self-sufficient ω-7 in-chain hydroxylase. Angewandte Chemie (International ed. in English), 59(26), 10359-10362.
Maximilian, J. L. J. F., Kerschbaumer, B., Claudia, R., Migglautsch, A. K., Winkler, M., & Fraaije, M. W. (2019). Exploring the biocatalytic potential of a self-sufficient cytochrome P450 from thermothelomyces thermophila. Advanced Synthesis & Catalysis, 361, 10.
Minerdi, D., Sadeghi, S. J., Pautasso, L., Morra, S., Aigotti, R., Medana, C., Gilardi, G., Gullino, M. L., & Gilardi, G. (2020). Expression and role of CYP505A1 in pathogenicity of Fusarium oxysporum f. sp. lactucae. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1868(1), 140268.
Mnguni, F. C., Padayachee, T., Chen, W., Gront, D., Yu, J. H., Nelson, D. R., & Syed, K. (2020). More P450s are involved in secondary metabolite biosynthesis in streptomyces compared to Bacillus, Cyanobacteria, and mycobacterium. International Journal of Molecular Sciences, 21(13), 4814.
Mo, X., Gui, C., & Yang, S. (2019). Cytochrome P450 oxidase SlgO1 catalyzes the biotransformation of tirandamycin C to a new tirandamycin derivative. 3 Biotech, 9(3), 71.
Mori, T., Ohno, H., Ichinose, H., Kawagishi, H., & Hirai, H. (2021). White-rot fungus phanerochaete chrysosporium metabolizes chloropyridinyl-type neonicotinoid insecticides by an n-dealkylation reaction catalyzed by two cytochrome P450s. Journal of Hazardous Materials, 402, 123831.
Msomi, N. N., Padayachee, T., Nzuza, N., Syed, P. R., Kryś, J. D., Chen, W., Gront, D., Nelson, D. R., & Syed, K. (2021). In silico analysis of P450s and their role in secondary metabolism in the bacterial class gammaproteobacteria. Molecules, 26(6), 1538.
Msweli, S., Chonco, A., Msweli, L., Syed, P. R., Karpoormath, R., Chen, W., Gront, D., Nkosi, B. V. Z., Nelson, D. R., & Syed, K. (2022). Lifestyles shape the cytochrome P450 repertoire of the bacterial phylum proteobacteria. International Journal of Molecular Sciences, 23(10), 5821.
Mthethwa, B., Chen, W., Ngwenya, M., Kappo, A., Syed, P., Karpoormath, R., Yu, J. H., Nelson, D., & Syed, K. (2018). Comparative analyses of cytochrome P450s and those associated with secondary metabolism in Bacillus species. International Journal of Molecular Sciences, 19(11), 3623.
Nelson, D. R. (2018). Cytochrome P450 diversity in the tree of life. Biochim Biophys Acta Proteins Proteom, 1866(1), 141-154.
Ngcobo, P. E., Nkosi, B. V. Z., Chen, W., Nelson, D. R., & Syed, K. (2023). Evolution of cytochrome P450 enzymes and their redox partners in archaea. International Journal of Molecular Sciences, 24(4), 4161.
Nguyen, K.-T., Nguyen, N.-L., Tung, N. V., Nguyen, H. H., Milhim, M., Le, T.-T.-X., Lai, T.-H.-N., Phan, T.-T.-M., & Bernhardt, R. (2020a). A novel thermostable cytochrome P450 from sequence-based metagenomics of binh chau hot spring as a promising catalyst for testosterone conversion. Catalysts, 10, 17.
Nguyen, N. A., Jang, J., Le, T.-K., Nguyen, T. H. H., Woo, S.-M., Yoo, S.-K., Lee, Y. J., Park, K. D., Yeom, S.-J., Kim, G.-J., Kang, H.-S., & Yun, C.-H. (2020b). Biocatalytic production of a potent inhibitor of adipocyte differentiation from phloretin using engineered CYP102A1. Journal of Agricultural and Food Chemistry, 68(24), 6683-6691.
Nkosi, B. V. Z., Padayachee, T., Gront, D., Nelson, D. R., & Syed, K. (2022). Contrasting health effects of bacteroidetes and firmicutes lies in their genomes: Analysis of P450s, ferredoxins, and secondary metabolite clusters. International Journal of Molecular Sciences, 23(9), 5057.
Nöth, M., Hussmann, L., Belthle, T., El-Awaad, I., Davari, M. D., Jakob, F., Pich, A., & Schwaneberg, U. (2020). MicroGelzymes: pH-independent immobilization of cytochrome P450 BM3 in microgels. Biomacromolecules, 21(12), 5128-5138.
Nzuza, N., Padayachee, T., Syed, P. R., Kryś, J. D., Chen, W., Gront, D., Nelson, D. R., & Syed, K. (2021). Ancient bacterial class alphaproteobacteria cytochrome P450 monooxygenases can be found in other bacterial species. International Journal of Molecular Sciences, 22(11), 5542.
Okazawa, A., Yamanishi, K., Katsuyama, N., Kitazawa, S., Ogawa, T., & Ohta, D. (2020). Identification of novel cytochrome P450 monooxygenases from actinomycetes capable of intermolecular oxidative C-C coupling reactions. Journal of Bioscience and Bioengineering, 129(1), 23-30.
Olukemi Akapo, O., Padayachee, T., Chen, W., Paul Kappo, A., Yu, J.-H., Nelson, D. R., & Syed, K. (2019). Distribution and diversity of cytochrome P450 monooxygenases in the fungal class tremellomycetes. International Journal of Molecular Sciences, 20, 14.
Padayachee, T., Nzuza, N., Chen, W., Nelson, D. R., & Syed, K. (2020). Impact of lifestyle on cytochrome P450 monooxygenase repertoire is clearly evident in the bacterial phylum firmicutes. Scientific Reports, 10(1), 13982.
Parajuli, N., Basnet, D. B., Chan Lee, H., Sohng, J. K., & Liou, K. (2004). Genome analyses of streptomyces peucetius ATCC 27952 for the identification and comparison of cytochrome P450 complement with other streptomyces. Archives of Biochemistry and Biophysics, 425(2), 233-241.
Pardhe, B. D., Do, H., Jeong, C. S., Kim, K. H., Lee, J. H., & Oh, T. J. (2021). Characterization of high-H2O2-tolerant bacterial cytochrome P450 CYP105D18: Insights into papaverine N-oxidation. IUCrJ, 8(Pt 4), 684-694.
Parisi, G., Freda, I., Exertier, C., Cecchetti, C., Gugole, E., Cerutti, G., D'Auria, L., Macone, A., Vallone, B., Savino, C., & Montemiglio, L. (2020). Dissecting the cytochrome P450 OleP substrate specificity: Evidence for a preferential substrate. Biomolecules, 10(10), 1411.
Park, H. G., Kim, V., Kim, H., Lee, R., Cho, M. A., Park, S. W., Chun, Y. J., & Kim, D. (2019). CYP52A23 from Candida albicans and its substrate preference for fatty acid hydroxylation. Archives of Biochemistry and Biophysics, 671, 27-34.
Parvez, M., Qhanya, L. B., Mthakathi, N. T., Kgosiemang, I. K. R., Bamal, H. D., Pagadala, N. S., Xie, T., Yang, H., Chen, H., Theron, C. W., Monyaki, R., Raselemane, S. C., Salewe, V., Mongale, B. L., Matowane, R. G., Abdalla, S. M. H., Booi, W. I., van Wyk, M., Olivier, D., … Syed, K. (2016). Molecular evolutionary dynamics of cytochrome P450 monooxygenases across kingdoms: Special focus on mycobacterial P450s. Scientific Reports, 6, 33099.
Permana, D., Kitaoka, T., & Ichinose, H. (2023). Conversion and synthesis of chemicals catalyzed by fungal cytochrome P450 monooxygenases: A review. Biotechnology and Bioengineering, 120(7), 1725-1745.
Petric, S., Hakki, T., Bernhardt, R., Zigon, D., & Cresnar, B. (2010). Discovery of a steroid 11alpha-hydroxylase from Rhizopus oryzae and its biotechnological application. Journal of Biotechnology, 150(3), 428-437.
Pickl, M., Kurakin, S., Cantú Reinhard, F. G., Schmid, P., Pöcheim, A., Winkler, C. K., Kroutil, W., de Visser, S. P., & Faber, K. (2019). Mechanistic studies of fatty acid activation by CYP152 peroxygenases reveal unexpected desaturase activity. ACS Catalysis, 9(1), 565-577.
Putkaradze, N., König, L., Kattner, L., Hutter, M. C., & Bernhardt, R. (2020). Highly regio- and stereoselective hydroxylation of vitamin D2 by CYP109E1. Biochemical and Biophysical Research Communications, 524(2), 295-300.
Putkaradze, N., Litzenburger, M., Abdulmughni, A., Milhim, M., Brill, E., Hannemann, F., & Bernhardt, R. (2017). CYP109E1 is a novel versatile statin and terpene oxidase from Bacillus megaterium. Applied Microbiology and Biotechnology, 101(23-24), 8379-8393.
Putkaradze, N., Litzenburger, M., Hutter, M. C., & Bernhardt, R. (2019). CYP109E1 from Bacillus megaterium acts as a 24- and 25-Hydroxylase for cholesterol. ChemBioChem, 20(5), 655-658.
Richards, L., Jarrold, A., Bowser, T., Stevens, G. W., & Gras, S. L. (2020). Cytochrome P450-mediated N-demethylation of noscapine by whole-cell biotransformation: Process limitations and strategies for optimisation. Journal of Industrial Microbiology and Biotechnology, 47(6-7), 449-464.
Rudolf, J. D., Chang, C. Y., Ma, M., & Shen, B. (2017). Cytochromes P450 for natural product biosynthesis in streptomyces: Sequence, structure, and function. Natural Product Reports, 34(9), 1141-1172.
Rudolf, J. D., Dong, L. B., Manoogian, K., & Shen, B. (2016). Biosynthetic origin of the ether ring in platensimycin. Journal of the American Chemical Society, 138(51), 16711-16721.
Rudolf, J. D., Dong, L. B., Zhang, X., Renata, H., & Shen, B. (2018). Cytochrome P450-catalyzed hydroxylation initiating ether formation in platensimycin biosynthesis. Journal of the American Chemical Society, 140(39), 12349-12353.
Sakai, K., Matsuzaki, F., Wise, L., Sakai, Y., Jindou, S., Ichinose, H., Takaya, N., Kato, M., Wariishi, H., & Shimizu, M. (2018). Biochemical characterization of CYP505D6, a self-sufficient cytochrome P450 from the White-Rot fungus Phanerochaete chrysosporium. Applied and Environmental Microbiology, 84(22), e01091-18.
Sakalli, T., & Surmeli, N. B. (2021). Functional characterization of a novel CYP119 variant to explore its biocatalytic potential. Biotechnology and Applied Biochemistry, 69(4), 1741-1756.
Sarkar, M. R., & Bell, S. G. (2020). Complementary and selective oxidation of hydrocarbon derivatives by two cytochrome P450 enzymes of the same family. Catalysis Science & Technology, 10(17), 5983-5995.
Sarkar, M. R., Dasgupta, S., Pyke, S. M., & Bell, S. G. (2019). Selective biocatalytic hydroxylation of unactivated methylene C-H bonds in cyclic alkyl substrates. Chemical Communications (Cambridge, England), 55, 5029-5032.
Schempp, F. M., Strobel, I., Etschmann, M. M. W., Bierwirth, E., Panten, J., Schewe, H., Schrader, J., & Buchhaupt, M. (2021). Identification of fungal limonene-3-hydroxylase for biotechnological menthol production. Applied and Environmental Microbiology, 87(10), e02873-20.
Senate, L. M., Tjatji, M. P., Pillay, K., Chen, W., Zondo, N. M., Syed, P. R., Mnguni, F. C., Chiliza, Z. E., Bamal, H. D., Karpoormath, R., Khoza, T., Mashele, S. S., Blackburn, J. M., Yu, J. H., Nelson, D. R., & Syed, K. (2019). Similarities, variations, and evolution of cytochrome P450s in Streptomyces versus mycobacterium. Scientific Reports, 9(1), 3962.
Shen, C., Liu, H., Dai, W., Liu, X., Liu, J., & Yu, B. (2019a). Specific N-demethylation of verapamil by cytochrome P450 from Streptomyces griseus ATCC 13273. Engineering in Life Sciences, 19(4), 292-301.
Shen, C., Shan, T., Zhao, W., Ou, C., Li, L., Liu, X., Liu, J., & Yu, B. (2019b). Regio- and enantioselective O-demethylation of tetrahydroprotoberberines by cytochrome P450 enzyme system from Streptomyces griseus ATCC 13273. Applied Microbiology and Biotechnology, 103(2), 761-776.
Shen, C., Zhao, W., Liu, X., & Liu, J. (2019c). Enzyme-catalyzed regio-selective demethylation of papaverine by CYP105D1. Biotechnology Letters, 41(1), 171-180.
Shi, Y., Jiang, Z., Hu, X., Hu, X., Gu, R., Jiang, B., Zuo, L., Li, X., Sun, H., Zhang, C., Wang, L., Wu, L., & Hong, B. (2021). The cytochrome P450 catalyzing C-S bond formation in S-Heterocyclization of Chuangxinmycin biosynthesis. Angewandte Chemie International Edition, 60(28), 15399-15404.
Subedi, P., Kim, K. H., Hong, Y. S., Lee, J. H., & Oh, T. J. (2021). Enzymatic characterization and comparison of two steroid hydroxylases CYP154C3-1 and CYP154C3-2 from Streptomyces species. Journal of Microbiology and Biotechnology, 31(3), 464-474.
Syed, K., Nelson, D. R., Riley, R., & Yadav, J. S. (2013). Genomewide annotation and comparative genomics of cytochrome P450 monooxygenases (P450s) in the polypore species Bjerkandera adusta, Ganoderma sp. and Phlebia brevispora. Mycologia, 105(6), 1445-1455.
Syed, K., Shale, K., Pagadala, N. S., & Tuszynski, J. (2014). Systematic identification and evolutionary analysis of catalytically versatile cytochrome p450 monooxygenase families enriched in model basidiomycete fungi. PLoS One, 9(1), e86683.
Theron, C. W., Labuschagné, M., Albertyn, J., & Smit, M. S. (2019). Heterologous coexpression of the benzoate-para-hydroxylase CYP53B1 with different cytochrome P450 reductases in various yeasts. Microbial Biotechnology, 12(6), 1126-1138.
Ueno, M., Kobayashi, M., Fujie, A., & Shibata, T. (2020). Cloning and heterologous expression of P450Lent4B11, a novel bacterial P450 gene, for hydroxylation of an antifungal agent sordaricin. The Journal of antibiotics, 73(9), 615-621.
Valikhani, D., Bolivar, J. M., Dennig, A., & Nidetzky, B. (2018). A tailor-made, self-sufficient and recyclable monooxygenase catalyst based on coimmobilized cytochrome P450 BM3 and glucose dehydrogenase. Biotechnology and Bioengineering, 115, 2416-2425.
Wang, J., Ohno, H., Ide, Y., Ichinose, H., Mori, T., Kawagishi, H., & Hirai, H. (2019). Identification of the cytochrome P450 involved in the degradation of neonicotinoid insecticide acetamiprid in Phanerochaete chrysosporium. Journal of Hazardous Materials, 371, 494-498.
Wang, Q., Ma, B., Fushinobu, S., Zhang, C., & Xu, L. H. (2020a). Regio- and stereoselective hydroxylation of testosterone by a novel cytochrome P450 154C2 from Streptomyces avermitilis. Biochemical and Biophysical Research Communications, 522(2), 355-361.
Wang, R., Sui, P., Hou, X., Cao, T., Jia, L., Lu, F., Singh, S., Wang, Z., & Liu, X. (2017). Cloning and identification of a novel steroid 11α-hydroxylase gene from Absidia coerulea. The Journal of Steroid Biochemistry and Molecular Biology, 171, 254-261.
Wang, S., Jiang, S., Chen, H., Bai, W.-J., & Wang, X. (2020b). Directed evolution of a hydroxylase into a decarboxylase for synthesis of 1-alkenes from fatty acids. ACS. Catalysis, 10(24), 14375-14379.
Wang, X., Yang, X., Jia, X., Jin, P., Wang, Z., Lu, F., & Liu, X. (2020c). Determination of steroid hydroxylation specificity of an industrial strain Aspergillus ochraceus TCCC41060 by cytochrome P450 gene CYP68J5. Annals of Microbiology, 70(1), 45.
Wapshott-Stehli, H. L., & Grunden, A. M. (2021). Temperature and solvent exposure response of three fatty acid peroxygenase enzymes for application in industrial enzyme processes. Biochemical and Biophysical Research Communications, 571, 60-65.
Xie, L., Chen, K., Cui, H., Wan, N., Cui, B., Han, W., & Chen, Y. (2020). Characterization of a self-sufficient cytochrome P450 monooxygenase from Deinococcus apachensis for enantioselective benzylic hydroxylation. Chembiochem: A European Journal of Chemical Biology, 21(13), 1820-1825.
Xu, L. H., Ikeda, H., Liu, L., Arakawa, T., Wakagi, T., Shoun, H., & Fushinobu, S. (2015). Structural basis for the 4’-hydroxylation of diclofenac by a microbial cytochrome P450 monooxygenase. Applied Microbiology and Biotechnology, 99(7), 3081-3091.
Yu, H., & Li, S.-M. (2019). Two cytochrome P450 enzymes from streptomyces sp. NRRL S-1868 catalyze distinct dimerization of tryptophan-containing cyclodipeptides. Organic Letters, 21(17), 7094-7098.
Zhang, L., Ma, D., Yin, Y., & Wang, Q. (2021). Using small molecules to enhance P450 OleT enzyme activity in situ. Chemistry - A European Journal, 27(35), 8940-8945.
Zhang, L., Manley, O. M., Ma, D., Yin, Y., Makris, T. M., & Wang, Q. (2020). Enhanced P450 fatty acid decarboxylase catalysis by glucose oxidase coupling and co-assembly for biofuel generation. Bioresource Technology, 311, 123538.
Zhou, S., Song, L., Masschelein, J., Sumang, F., Papa, I. A., Zulaybar, T. O., Custodio, A. B., Zabala, D., Alcantara, E. P., de los Santos, E., & Challis, G. L. (2019). Pentamycin biosynthesis in philippine streptomyces sp. S816: Cytochrome P450-catalyzed installation of the C-14 hydroxyl group. ACS Chemical Biology, 14, 1305-1309.
Zhu, J., Shen, C., Zhao, W., Liu, X., Liu, J., & Yu, B. (2020a). Regio- and stereoselective hydroxylation of testosterone by cytochrome P450 from Streptomyces griseus ATCC 13273. Biocatalysis and Biotransformation, 39(2), 130-137.
Zhu, Y., Zhang, Q., Fang, C., Zhang, Y., Ma, L., Liu, Z., Zhai, S., Peng, J., Zhang, L., & Zhu, W. (2020b). Refactoring the concise biosynthetic pathway of cyanogramide unveils spirooxindole formation catalyzed by a P450 enzyme. Angewandte Chemie International Edition England, 59(33), 14065-14069.
Zondo, N. M., Padayachee, T., Nelson, D. R., & Syed, K. (2022). Saprophytic to pathogenic mycobacteria: Loss of cytochrome P450s Vis a Vis their prominent involvement in natural metabolite biosynthesis. International Journal of Molecular Sciences, 24(1), 149. - Grant Information: S&T Program of Hebei; B2021208018 Natural Science Foundation of Hebei Province
- Contributed Indexing: Keywords: P450ome; biocatalysis; cytochrome P450; environmental protection; pharmaceutics
- Accession Number: 9035-51-2 (Cytochrome P-450 Enzyme System)
- Publication Date: Date Created: 20230928 Date Completed: 20231219 Latest Revision: 20240105
- Publication Date: 20240106
- Accession Number: 10.1002/bit.28565
- Accession Number: 37767638
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.