Classification of firing pin impressions using HOG-SVM.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Blackwell Pub Country of Publication: United States NLM ID: 0375370 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1556-4029 (Electronic) Linking ISSN: 00221198 NLM ISO Abbreviation: J Forensic Sci Subsets: PubMed not MEDLINE; MEDLINE
    • Publication Information:
      Publication: 2006- : Malden, MA : Blackwell Pub.
      Original Publication: [Chicago, Ill.] : Callaghan and Co., 1956-
    • Abstract:
      Crimes, such as robbery and murder, often involve firearms. In order to assist with the investigation into the crime, firearm examiners are asked to determine whether cartridge cases found at a crime scene had been fired from a suspect's firearm. This examination is based on a comparison of the marks left on the surfaces of cartridge cases. Firing pin impressions can be one of the most commonly used of these marks. In this study, a total of nine Ruger model 10/22 semiautomatic rifles were used. Fifty cartridges were fired from each rifle. The cartridge cases were collected, and each firing pin impression was then cast and photographed using a comparison microscope. In this paper, we will describe how one may use a computer vision algorithm, the Histogram of Orientated Gradient (HOG), and a machine learning method, Support Vector Machines (SVMs), to classify images of firing pin impressions. Our method achieved a reasonably high accuracy at 93%. This can be used to associate a firearm with a cartridge case recovered from a scene. We also compared our method with other feature extraction algorithms. The comparison results showed that the HOG-SVM method had the highest performance in this classification task.
      (© 2023 American Academy of Forensic Sciences.)
    • References:
      Gerules G, Bhatia SK, Jackson DE. A survey of image processing techniques and statistics for ballistic specimens in forensic science. Sci Justice. 2013;53(2):236-250. https://doi.org/10.1016/j.scijus.2012.07.002.
      Murdock J, Cavallo J, Kreiser J, Meyers C, Morris B, Sibert B, et al. Theory of identification, range of striae comparison reports and modified glossary definitions-an AFTE criteria for identification committee report. AFTE J. 1990;22(3):275-279.
      Thompson RM. Automated firearms evidence comparison using the integrated ballistic identification system (IBIS). In: Higgins K, editor. Proceedings Volume 3576 - Investigation and Forensic Science Technologies; 1998 Nov 3-4; Boston, MA. Bellingham, WA: SPIE; 1999. p. 94-103. https://doi.org/10.1117/12.334519.
      Smith CL. Fireball: a forensic ballistics imaging system. Proceedings of the IEEE 31st Annual 1997 International Carnahan Conference on Security Technology; 1997 Oct 15-17; Canberra, Australia. Piscataway, NJ: IEEE; 1997. p. 64-70. https://doi.org/10.1109/CCST.1997.626240.
      Song J. Proposed NIST ballistics identification system (NBIS) based on 3D topography measurements on correlation cells. AFTE J. 2013;45(2):184-194.
      Chu W, Tong M, Song J-F. Validation tests for the congruent matching cells (CMC) method using cartridge cases fired with consecutively manufactured pistol slides. AFTE J. 2013;45(2):361-366.
      Song J, Vorburger TV, Chu W, Yen J, Soons JA, Ott DB, et al. Estimating error rates for firearm evidence identifications in forensic science. Forensic Sci Int. 2018;284:15-32. https://doi.org/10.1016/j.forsciint.2017.12.013.
      Tong M, Yu X, Huang S. Automatic identification of firing pin impressions based on the congruent matching cell (CMC) method. Neurocomputing. 2019;367:246-258. https://doi.org/10.1016/j.neucom.2019.08.033.
      Tong M, Song J, Chu W. An improved algorithm of congruent matching cells (CMC) method for firearm evidence identifications. J Res Natl Inst Stand Technol. 2015;120:102-112. https://doi.org/10.6028/jres.120.008.
      Tai XH, Eddy WF. A fully automatic method for comparing cartridge case images. J Forensic Sci. 2018;63(2):440-448. https://doi.org/10.1111/1556-4029.13577.
      Azad P, Asfour T, Dillmann R. Combining Harris interest points and the sift descriptor for fast scale-invariant object recognition. Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2009 Oct 11-15; St. Louis, MO. Piscataway, NJ: IEEE; 2009. p. 4275-4280. https://doi.org/10.1109/IROS.2009.5354611.
      Geng C, Jiang X. Face recognition using sift features. Proceedings of the 2009 16th IEEE International Conference on Image Processing (ICIP); 2009 Nov 7-10; Cairo, Egypt. Piscataway, NJ: IEEE; 2009. p. 3313-3316. https://doi.org/10.1109/ICIP.2009.5413956.
      Moranduzzo T, Melgani F. A sift-svm method for detecting cars in uav images. Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium; 2012 July 22-27; Munich, Germany. Piscataway, NJ: IEEE; 2012. p. 6868-6871. https://doi.org/10.1109/IGARSS.2012.6352585.
      Zhuo L, Geng Z, Zhang J, Li XG. ORB feature based web pornographic image recognition. Neurocomputing. 2016;173:511-517. https://doi.org/10.1016/j.neucom.2015.06.055.
      Biasotti AA. A statistical study of the individual characteristics of fired bullets. J Forensic Sci. 1959;4(1):34-50.
      Faden D, Kidd J, Craft J, Chumbley L, Morris M, Genalo L, et al. Statistical confirmation of empirical observations concerning tool mark striae. AFTE J. 2007;39(3):205-214.
      Mattijssen EJ, Witteman CL, Berger CE, Brand NW, Stoel RD. Validity and reliability of forensic firearm examiners. Forensic Sci Int. 2020;307:110112. https://doi.org/10.1016/j.forsciint.2019.110112.
      Baiker M, Petraco ND, Gambino C, Pieterman R, Shenkin P, Zoon P. Virtual and simulated striated toolmarks for forensic applications. Forensic Sci Int. 2016;261:43-52. https://doi.org/10.1016/j.forsciint.2016.01.035.
      Gambino C, McLaughlin P, Kuo L, Kammerman F, Shenkin P, Diaczuk P, et al. Forensic surface metrology: tool mark evidence. Scanning. 2011;33(5):272-278. https://doi.org/10.1002/sca.20251.
      Ghani NAM, Liong C-Y, Jemain AA. Analysis of geometric moments as features for firearm identification. Forensic Sci Int. 2010;198(1-3):143-149. https://doi.org/10.1016/j.forsciint.2010.02.011.
      Zhou J, Xin L-P, Rong G, Zhang D. Decision fusion based cartridge identification using support vector machine. Smc 2000 conference proceedings. Proceedings of the 2000 IEEE International Conference on Systems, Man and Cybernetics; 2000 Oct 8-11; Nashville, TN. Piscataway, NJ: IEEE; 2000. p. 2873-2877. https://doi.org/10.1109/ICSMC.2000.884434.
      Duda RO, Hart PE. Use of the hough transformation to detect lines and curves in pictures. Commun ACM. 1972;15(1):11-15. https://doi.org/10.1145/361237.361242.
      Trahanias PE, Venetsanopoulos AN. Color image enhancement through 3-d histogram equalization. Proceedings of the 11th IAPR International Conference on Pattern Recognition. Vol. III. Conference C: Image, Speech and Signal Analysis; 1992 Aug 30-Sept 1; The Hague, Netherldands. Piscataway, NJ: IEEE; 1992. p. 545-548. https://doi.org/10.1109/ICPR.1992.202045.
      Garg P, Jain T. A comparative study on histogram equalization and cumulative histogram equalization. Int J New Tech Res. 2017;3(9):263242.
      Ahmad M, Sundararajan D. A fast algorithm for two dimensional median filtering. IEEE Trans Circuits Syst. 1987;34(11):1364-1374. https://doi.org/10.1109/TCS.1987.1086059.
      Schalkoff RJ. Digital image processing and computer vision: an introduction to theory and implementations. Hoboken, NJ: John Wiley & Sons, Inc.; 1989.
      Dalal N, Triggs B. Histograms of oriented gradients for human detection. Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05); 2005 June 20-26; San Diego, CA. Piscataway, NJ: IEEE; 2005. p. 886-893. https://doi.org/10.1109/CVPR.2005.177.
      Li X-Y, Lin Z-X. Face recognition based on hog and fast PCA algorithm. In: Kromer P, Alba E, Pan J-S, Snasel V, editors. Proceedings of the fourth euro-China conference on intelligent data analysis and applications; 2017 oct 9-11. Bulevar Louis Pasteur, Spaon: Springer; 2017. p. 10-21. https://doi.org/10.1007/978-3-319-68527-4_2.
      Choudhury A, Rana HS, Bhowmik T. Handwritten bengali numeral recognition using HOG based feature extraction algorithm. Proceedings of the 5th International Conference on Signal Processing and Integrated Networks (SPIN 2018); 2018 Feb 22-23; Noida, Delhi-NCR, India. Piscataway, NJ: IEEE; 2018. p. 687-690. https://doi.org/10.1109/SPIN.2018.8474215.
      Dubey AR, Shukla N, Kumar D. Detection and classification of road signs using HOG-SVM method. In: Elci A, Kumar Sa P, Modi CN, Olague G, Sahoo MN, Bakshi S, editors. Smart computing paradigms: new progresses and challenges. Singapore: Springer; 2020. p. 49-56. https://doi.org/10.1007/978-981-13-9683-0_6.
      Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Series B Stat Methodol. 1996;58(1):267-288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x.
      Lowe DG. Object recognition from local scale-invariant features. Proceedings of the Seventh IEEE International Conference on Computer Vision; 1999 Sept 20-27; Corfu, Greece. Piscataway, NJ: IEEE; 1999. p. 1150-1157. https://doi.org/10.1109/ICCV.1999.790410.
      Bay H, Ess A, Tuytelaars T, Van Gool L. Speeded-up robust features (SURF). Comput Vis Image Underst. 2008;110(3):346-359. https://doi.org/10.1007/11744023_32.
      Rublee E, Rabaud V, Konolige K, Bradski G. ORB: an efficient alternative to sift or surf. In: Crowley JL, Draper B, Thonnat M, editors. Proceedings of the 2011 International Conference on Computer Vision; 2011 Sept 20-22; Sophia Antipolis, France. Piscataway, NJ: IEEE; 2011. p. 2564-2571. https://doi.org/10.1109/ICCV.2011.6126544.
      Calonder M, Lepetit V, Strecha C, Fua P. Brief: binary robust independent elementary features. In: Daniilidis K, Maragos P, Paragios N, editors. Proceedings of the 11th European Conference on Computer Vision (ECCV 2010); 2010 Sept 5-11; Heraklion, Crete, Greece. Berlin/Heidelberg, Germany: Springer; 2010. p. 778-792. https://doi.org/10.1007/978-3-642-15561-1_56.
      Van Rossum G, Drake FL. Python 3 reference manual. Scotts Valley, CA: CreateSpace; 2009.
      Bradski G. The openCV library. Dr Dobb's J. 2000;25(11):120-123.
    • Contributed Indexing:
      Keywords: computer vision; firing pin impression; histogram of orientated gradient; image classification; support vector machine
    • Publication Date:
      Date Created: 20230911 Latest Revision: 20231026
    • Publication Date:
      20240628
    • Accession Number:
      10.1111/1556-4029.15377
    • Accession Number:
      37691406