Human myofibroblasts increase the arrhythmogenic potential of human induced pluripotent stem cell-derived cardiomyocytes.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Switzerland NLM ID: 9705402 Publication Model: Electronic Cited Medium: Internet ISSN: 1420-9071 (Electronic) Linking ISSN: 1420682X NLM ISO Abbreviation: Cell Mol Life Sci Subsets: MEDLINE
    • Publication Information:
      Publication: Basel : Springer
      Original Publication: Basel ; Boston : Birkhauser, c1997-
    • Subject Terms:
    • Abstract:
      Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have the potential to remuscularize infarcted hearts but their arrhythmogenicity remains an obstacle to safe transplantation. Myofibroblasts are the predominant cell-type in the infarcted myocardium but their impact on transplanted hiPSC-CMs remains poorly defined. Here, we investigate the effect of myofibroblasts on hiPSC-CMs electrophysiology and Ca 2+ handling using optical mapping of advanced human cell coculture systems mimicking cell-cell interaction modalities. Human myofibroblasts altered the electrophysiology and Ca 2+ handling of hiPSC-CMs and downregulated mRNAs encoding voltage channels (K V 4.3, K V 11.1 and Kir6.2) and SERCA2a calcium pump. Interleukin-6 was elevated in the presence of myofibroblasts and direct stimulation of hiPSC-CMs with exogenous interleukin-6 recapitulated the paracrine effects of myofibroblasts. Blocking interleukin-6 reduced the effects of myofibroblasts only in the absence of physical contact between cell-types. Myofibroblast-specific connexin43 knockdown reduced functional changes in contact cocultures only when combined with interleukin-6 blockade. This provides the first in-depth investigation into how human myofibroblasts modulate hiPSC-CMs function, identifying interleukin-6 and connexin43 as paracrine- and contact-mediators respectively, and highlighting their potential as targets for reducing arrhythmic risk in cardiac cell therapy.
      (© 2023. The Author(s).)
    • Comments:
      Erratum in: Cell Mol Life Sci. 2024 Dec 27;82(1):20. doi: 10.1007/s00018-024-05492-w. (PMID: 39725787)
    • References:
      Chen W et al (2021) Cardiac fibroblasts and myocardial regeneration. Front Bioeng Biotechnol 9(227):599928. (PMID: 33842440802689410.3389/fbioe.2021.599928)
      Liew LC, Ho BX, Soh B-S (2020) Mending a broken heart: current strategies and limitations of cell-based therapy. Stem Cell Res Ther 11(1):138. (PMID: 32216837709809710.1186/s13287-020-01648-0)
      Shiba Y et al (2016) Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature 538(7625):388–391. (PMID: 2772374110.1038/nature19815)
      Guan X et al (2020) Transplantation of human induced pluripotent stem cell-derived cardiomyocytes improves myocardial function and reverses ventricular remodeling in infarcted rat hearts. Stem Cell Res Ther 11(1):73. (PMID: 32085809703391210.1186/s13287-020-01602-0)
      Rojas SV et al (2017) Transplantation of purified iPSC-derived cardiomyocytes in myocardial infarction. PLoS ONE 12(5):e0173222. (PMID: 28493867542659810.1371/journal.pone.0173222)
      Ye L et al (2014) Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells. Cell Stem Cell 15(6):750–761. (PMID: 25479750427505010.1016/j.stem.2014.11.009)
      Liu YW et al (2018) Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat Biotechnol 36(7):597–605. (PMID: 29969440632937510.1038/nbt.4162)
      Nakamura K et al (2021) Pharmacologic therapy for engraftment arrhythmia induced by transplantation of human cardiomyocytes. Stem Cell Rep 16(10):2473–2487. (PMID: 10.1016/j.stemcr.2021.08.005)
      Romagnuolo R et al (2019) Human embryonic stem cell-derived cardiomyocytes regenerate the infarcted pig heart but induce ventricular tachyarrhythmias. Stem Cell Rep 12(5):967–981. (PMID: 10.1016/j.stemcr.2019.04.005)
      Yu JK et al (2019) A comprehensive, multiscale framework for evaluation of arrhythmias arising from cell therapy in the whole post-myocardial infarcted heart. Sci Rep 9(1):9238. (PMID: 31239508659289010.1038/s41598-019-45684-0)
      Camelliti P, Borg TK, Kohl P (2005) Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res 65(1):40–51. (PMID: 1562103210.1016/j.cardiores.2004.08.020)
      Turner NA et al (2009) Interleukin-1alpha stimulates proinflammatory cytokine expression in human cardiac myofibroblasts. Am J Physiol Heart Circ Physiol 297(3):H1117–H1127. (PMID: 1964825210.1152/ajpheart.00372.2009)
      Souders CA, Bowers SLK, Baudino TA (2009) Cardiac fibroblast: the renaissance cell. Circ Res 105(12):1164–1176. (PMID: 19959782334553110.1161/CIRCRESAHA.109.209809)
      Willems IE et al (1994) The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Am J Pathol 145(4):868–875. (PMID: 79431771887334)
      Pedrotty DM et al (2009) Cardiac fibroblast paracrine factors alter impulse conduction and ion channel expression of neonatal rat cardiomyocytes. Cardiovasc Res 83(4):688–697. (PMID: 19477968272577710.1093/cvr/cvp164)
      Kaur K et al (2013) TGF-beta1, released by myofibroblasts, differentially regulates transcription and function of sodium and potassium channels in adult rat ventricular myocytes. PLoS ONE 8(2):e55391. (PMID: 23393573356480810.1371/journal.pone.0055391)
      Vasquez C et al (2010) Enhanced fibroblast–myocyte interactions in response to cardiac injury. Circ Res 107(8):1011–1020. (PMID: 20705922299356610.1161/CIRCRESAHA.110.227421)
      Miragoli M, Gaudesius G, Rohr S (2006) Electrotonic modulation of cardiac impulse conduction by myofibroblasts. Circ Res 98(6):801–810. (PMID: 1648461310.1161/01.RES.0000214537.44195.a3)
      Kohl P et al (2005) Electrical coupling of fibroblasts and myocytes: relevance for cardiac propagation. J Electrocardiol 38(4 Suppl):45–50. (PMID: 1622607310.1016/j.jelectrocard.2005.06.096)
      Cartledge JE et al (2015) Functional crosstalk between cardiac fibroblasts and adult cardiomyocytes by soluble mediators. Cardiovasc Res 105(3):260–270. (PMID: 2556032010.1093/cvr/cvu264)
      Hatada K et al (2006) Tumor necrosis factor-α inhibits the cardiac delayed rectifier K current via the asphingomyelin pathway. Biochem Biophys Res Commun 344(1):189–193. (PMID: 1661599410.1016/j.bbrc.2006.03.115)
      Kucharz EJ, Wilk T (2000) Dynamics of serum interleukin-6 level in patients with acute myocardial infarction. Eur J Intern Med 11(5):253–256. (PMID: 1102524910.1016/S0953-6205(00)00098-4)
      Ma F et al (2012) Macrophage-stimulated cardiac fibroblast production of IL-6 is essential for TGF β/Smad activation and cardiac fibrosis induced by angiotensin II. PLoS ONE 7(5):e35144. (PMID: 22574112334483510.1371/journal.pone.0035144)
      Wollert KC, Drexler H (2001) The role of interleukin-6 in the failing heart. Heart Fail Rev 6(2):95–103. (PMID: 1130952810.1023/A:1011401825680)
      Camelliti P et al (2004) Fibroblast network in rabbit sinoatrial node. Circ Res 94(6):828–835. (PMID: 1497612510.1161/01.RES.0000122382.19400.14)
      Quinn TA et al (2016) Electrotonic coupling of excitable and nonexcitable cells in the heart revealed by optogenetics. Proc Natl Acad Sci USA 113(51):14852. (PMID: 27930302518773510.1073/pnas.1611184114)
      Rubart M et al (2018) Electrical coupling between ventricular myocytes and myofibroblasts in the infarcted mouse heart. Cardiovasc Res 114(3):389–400. (PMID: 2901673110.1093/cvr/cvx163)
      Mahoney VM et al (2016) Connexin43 contributes to electrotonic conduction across scar tissue in the intact heart. Sci Rep 6(1):26744. (PMID: 27244564488668910.1038/srep26744)
      Jasmin NH et al (2021) Myocardial viability imaging using manganese-enhanced MRI in the first hours after myocardial infarction. Adv Sci (Weinh) 8(11):e2003987. (PMID: 3410528410.1002/advs.202003987)
      Dempster J et al (2002) WinFluor: an integrated system for the simultaneous recording of cell fluorescence images and electrophysiological signals on a single computer system. Br J Pharmacol 137(proceedings supplement):146P-146P.
      Nisbet AM et al (2016) Prolongation of atrio-ventricular node conduction in a rabbit model of ischaemic cardiomyopathy: role of fibrosis and connexin remodelling. J Mol Cell Cardiol 94:54–64. (PMID: 27021518487360210.1016/j.yjmcc.2016.03.011)
      Johnson RD, Camelliti P (2018) Role of non-myocyte gap junctions and connexin hemichannels in cardiovascular health and disease: novel therapeutic targets? Int J Mol Sci 19(3):866. (PMID: 29543751587772710.3390/ijms19030866)
      Camelliti P et al (2004) Spatially and temporally distinct expression of fibroblast connexins after sheep ventricular infarction. Cardiovasc Res 62(2):415–425. (PMID: 1509436110.1016/j.cardiores.2004.01.027)
      Askar SF et al (2011) Connexin43 silencing in myofibroblasts prevents arrhythmias in myocardial cultures: role of maximal diastolic potential. Cardiovasc Res 93(3):434–444. (PMID: 2219850910.1093/cvr/cvr351)
      Guo W et al (1999) Paracrine hypertrophic factors from cardiac non-myocyte cells downregulate the transient outward current density and Kv4.2 K+ channel expression in cultured rat cardiomyocytes. Cardiovasc Res 41(1):157–165. (PMID: 1032596310.1016/S0008-6363(98)00157-6)
      Trieschmann J et al (2016) The interaction between adult cardiac fibroblasts and embryonic stem cell-derived cardiomyocytes leads to proarrhythmic changes in in vitro cocultures. Stem Cells Int 2016:2936126–2936126. (PMID: 26880949473640710.1155/2016/2936126)
      Zhao Z et al (2018) Ion channel expression and characterization in human induced pluripotent stem cell-derived cardiomyocytes. Stem Cells Int 2018:6067096–6067096. (PMID: 29535773583523710.1155/2018/6067096)
      Kääb S et al (1998) Molecular basis of transient outward potassium current downregulation in human heart failure: a decrease in Kv4.3 mRNA correlates with a reduction in current density. Circulation 98(14):1383–1393. (PMID: 976029210.1161/01.CIR.98.14.1383)
      El-Battrawy I et al (2018) Electrical dysfunctions in human-induced pluripotent stem cell-derived cardiomyocytes from a patient with an arrhythmogenic right ventricular cardiomyopathy. Europace 20(Fi1):f46–f56. (PMID: 2956612610.1093/europace/euy042)
      Hwang HS et al (2015) Comparable calcium handling of human iPSC-derived cardiomyocytes generated by multiple laboratories. J Mol Cell Cardiol 85:79–88. (PMID: 25982839453004110.1016/j.yjmcc.2015.05.003)
      Kuster GM et al (2010) Redox-mediated reciprocal regulation of SERCA and Na+-Ca2+ exchanger contributes to sarcoplasmic reticulum Ca2+ depletion in cardiac myocytes. Free Radic Biol Med 48(9):1182–1187. (PMID: 20132882284763310.1016/j.freeradbiomed.2010.01.038)
      Nagaraju CK et al (2019) Myofibroblast modulation of cardiac myocyte structure and function. Sci Rep 9(1):8879. (PMID: 31222006658692910.1038/s41598-019-45078-2)
      Kofron CM et al (2017) Gq-activated fibroblasts induce cardiomyocyte action potential prolongation and automaticity in a three-dimensional microtissue environment. Am J Physiol Heart Circ 313(4):H810–H827. (PMID: 10.1152/ajpheart.00181.2017)
      Xie Y et al (2009) Cardiac alternans induced by fibroblast-myocyte coupling: mechanistic insights from computational models. Am J Physiol Heart Circ Physiol 297(2):H775–H784. (PMID: 19482965272420810.1152/ajpheart.00341.2009)
      MacCannell KA et al (2007) A mathematical model of electrotonic interactions between ventricular myocytes and fibroblasts. Biophys J 92(11):4121–4132. (PMID: 17307821186899410.1529/biophysj.106.101410)
      Maleckar MM et al (2009) Electrotonic coupling between human atrial myocytes and fibroblasts alters myocyte excitability and repolarization. Biophys J 97(8):2179–2190. (PMID: 19843450276408310.1016/j.bpj.2009.07.054)
      Kane C, Terracciano CM (2018) Human cardiac fibroblasts engage the sarcoplasmic reticulum in induced pluripotent stem cell-derived cardiomyocyte excitation-contraction coupling. J Am Coll Cardiol 72(9):1061. (PMID: 3013943510.1016/j.jacc.2018.06.028)
      Beauchamp P et al (2020) 3D co-culture of hiPSC-derived cardiomyocytes with cardiac fibroblasts improves tissue-like features of cardiac spheroids. Front Mol Biosci 7:14. (PMID: 32118040703347910.3389/fmolb.2020.00014)
      Giacomelli E et al (2020) Human-iPSC-derived cardiac stromal cells enhance maturation in 3D cardiac microtissues and reveal non-cardiomyocyte contributions to heart disease. Cell Stem Cell 26(6):862-879 e11. (PMID: 32459996728430810.1016/j.stem.2020.05.004)
      Miragoli M, Salvarani N, Rohr S (2007) Myofibroblasts induce ectopic activity in cardiac tissue. Circ Res 101(8):755–758. (PMID: 1787246010.1161/CIRCRESAHA.107.160549)
      Campos FO et al (2019) Factors promoting conduction slowing as substrates for block and reentry in infarcted hearts. Biophys J 117(12):2361–2374. (PMID: 31521328699037410.1016/j.bpj.2019.08.008)
      Ancey C et al (2002) Secretion of IL-6, IL-11 and LIF by human cardiomyocytes in primary culture. Cytokine 18(4):199–205. (PMID: 1212664210.1006/cyto.2002.1033)
      Lazzerini PE et al (2020) IL-6 (interleukin 6) blockade and heart rate corrected QT interval prolongation in COVID-19. Circ Arrhythm Electrophysiol 13(9):e008791–e008791. (PMID: 32702997748261610.1161/CIRCEP.120.008791)
      Aromolaran AS et al (2018) Interleukin-6 inhibition of hERG underlies risk for acquired long QT in cardiac and systemic inflammation. PLoS ONE 13(12):e0208321–e0208321. (PMID: 30521586628363510.1371/journal.pone.0208321)
      Zuo S et al (2020) Pravastatin alleviates intracellular calcium dysregulation induced by Interleukin-6 via the mitochondrial ROS pathway in adult ventricular myocytes. J Pharmacol Sci 143(3):141–147. (PMID: 3225310310.1016/j.jphs.2020.01.013)
      Tanaka T et al (2004) Interleukin-6-induced reciprocal expression of SERCA and natriuretic peptides mRNA in cultured rat ventricular myocytes. J Int Med Res 32(1):57–61. (PMID: 1499770710.1177/147323000403200109)
      Biendarra-Tiegs SM et al (2020) Human induced pluripotent stem cell-derived non-cardiomyocytes modulate cardiac electrophysiological maturation through connexin 43-mediated cell-cell interactions. Stem Cells Dev 29(2):75–89. (PMID: 31744402697878810.1089/scd.2019.0098)
      Thompson SA et al (2011) Mechanical coupling between myofibroblasts and cardiomyocytes slows electric conduction in fibrotic cell monolayers. Circulation 123(19):2083–2093. (PMID: 21537003317645910.1161/CIRCULATIONAHA.110.015057)
      Lin J, Keener JP (2013) Ephaptic coupling in cardiac myocytes. IEEE Trans Biomed Eng 60(2):576–582. (PMID: 2333523510.1109/TBME.2012.2226720)
      Salvarani N et al (2017) TGF-β1 (transforming growth factor-β1) plays a pivotal role in cardiac myofibroblast arrhythmogenicity. Circ Arrhythm Electrophysiol 10(5):e004567. (PMID: 2850017310.1161/CIRCEP.116.004567)
      Chong JJ et al (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510(7504):273–277. (PMID: 24776797415459410.1038/nature13233)
      Kawaguchi S et al (2021) Intramyocardial transplantation of human iPS cell-derived cardiac spheroids improves cardiac function in heart failure animals. JACC Basic Transl Sci 6(3):239–254. (PMID: 33778211798754310.1016/j.jacbts.2020.11.017)
      Ramkisoensing AA et al (2014) Interaction between myofibroblasts and stem cells in the fibrotic heart: balancing between deterioration and regeneration. Cardiovasc Res 102(2):224–231. (PMID: 2457695510.1093/cvr/cvu047)
      Fontes JA, Rose NR, Čiháková D (2015) The varying faces of IL-6: From cardiac protection to cardiac failure. Cytokine 74(1):62–68. (PMID: 25649043467777910.1016/j.cyto.2014.12.024)
      Kadota S et al (2017) In vivo maturation of human induced pluripotent stem cell-derived cardiomyocytes in neonatal and adult rat hearts. Stem Cell Rep 8(2):278–289. (PMID: 10.1016/j.stemcr.2016.10.009)
      Fassina D et al (2023) Assessing the arrhythmogenic risk of engineered heart tissue patches through in silico application on infarcted ventricle models. Comput Biol Med 154:106550. (PMID: 3670196610.1016/j.compbiomed.2023.106550)
      Broch K et al (2021) Randomized trial of interleukin-6 receptor inhibition in patients with acute ST-segment elevation myocardial infarction. J Am Coll Cardiol 77(15):1845–1855. (PMID: 3385862010.1016/j.jacc.2021.02.049)
      Lazzerini PE et al (2015) Antiarrhythmic potential of anticytokine therapy in rheumatoid arthritis: tocilizumab reduces corrected QT interval by controlling systemic inflammation. Arthritis Care Res (Hoboken) 67(3):332–339. (PMID: 2518622610.1002/acr.22455)
      Laird DW, Lampe PD (2018) Therapeutic strategies targeting connexins. Nat Rev Drug Discov 17(12):905–921. (PMID: 30310236646153410.1038/nrd.2018.138)
      Roell W et al (2018) Overexpression of Cx43 in cells of the myocardial scar: correction of post-infarct arrhythmias through heterotypic cell-cell coupling. Sci Rep 8(1):7145. (PMID: 29739982594089210.1038/s41598-018-25147-8)
      Baggett BC et al (2023) Myofibroblast senescence promotes arrhythmogenic remodeling in the aged infarcted rabbit heart. Elife 12:e84088. (PMID: 372043021025937510.7554/eLife.84088)
      Feyen DAM et al (2020) Metabolic maturation media improve physiological function of human iPSC-derived cardiomyocytes. Cell Rep 32(3):107925. (PMID: 3269799710.1016/j.celrep.2020.107925)
      Yoshida S et al (2023) A clinical-grade HLA haplobank of human induced pluripotent stem cells matching approximately 40% of the Japanese population. Med 4(1):51-66 e10. (PMID: 3639575710.1016/j.medj.2022.10.003)
    • Grant Information:
      FS/PHD/20/29053 United Kingdom BHF_ British Heart Foundation; PG/22/11172 United Kingdom BHF_ British Heart Foundation; FS/17/33/32931 United Kingdom BHF_ British Heart Foundation
    • Contributed Indexing:
      Keywords: Cardiac cell therapy; Connexin-43; Crosstalk; Fibroblasts; Heterocellular communication; Interleukin-6; Myocardial infarction; Paracrine
    • Accession Number:
      0 (Connexin 43)
      0 (Interleukin-6)
      0 (Cardiotonic Agents)
    • Publication Date:
      Date Created: 20230905 Date Completed: 20230906 Latest Revision: 20241226
    • Publication Date:
      20241227
    • Accession Number:
      PMC10480244
    • Accession Number:
      10.1007/s00018-023-04924-3
    • Accession Number:
      37668685