SNORC knockdown alleviates inflammation, autophagy defect and matrix degradation of chondrocytes in osteoarthritis development.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Netherlands NLM ID: 0364456 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-4919 (Electronic) Linking ISSN: 03008177 NLM ISO Abbreviation: Mol Cell Biochem Subsets: MEDLINE
    • Publication Information:
      Publication: New York : Springer
      Original Publication: The Hague, Dr. W. Junk B. V. Publishers.
    • Subject Terms:
    • Abstract:
      Excessive inflammation and autophagy defect of chondrocytes play important roles in the pathological process of osteoarthritis (OA). The present study aimed to clarify the roles of small novel rich in cartilage (SNORC) in these pathological changes of chondrocytes in OA. Bioinformatics analysis of GEO dataset GSE207881 displayed that SNORC was a potential biomarker for OA. As confirmed by quantitative real-time PCR, immunohistochemical staining and western blotting, SNORC was significantly up-regulated in cartilage of OA rat model and interleukin (IL)-1β-stimulated primary rat articular chondrocytes in contrast to their corresponding normal control. Knocking down SNORC in IL-1β-induced chondrocytes obviously suppressed the production of nitric oxide (NO), IL-6, tumor necrosis factor (TNF)-α and prostaglandin E2 (PGE2) to alleviate inflammation, and reduced the protein levels of a disintegrin and metalloproteinase with thrombospondin 5 (ADAMTS5) and matrix metallopeptidase (MMP)13 and elevated collagen type 2 alpha 1 (COL2A1) level to improve matrix degradation. Down-regulation of SNORC increased Beclin1 expression and LC3II/LC3I ratio, but suppressed p62 expression to restore impaired autophagy in IL-1β-induced chondrocytes. Moreover, down-regulating SNORC mitigated mitochondrial dysfunction and apoptosis in IL-1β-stimulated chondrocytes. Mechanically, SNORC simultaneously activated the phosphatidylinositol-3-kinase/serine threonine kinase (PI3K/AKT) and c-Jun N-terminal kinase (JNK)/c-Jun signaling pathway in the IL-1β-induced chondrocyte, while re-activating the PI3K and JNK signals abolished the suppressive effect of down-regulating SNORC on IL-1β-induced chondrocyte damage. In a word, SNORC knockdown alleviates inflammation, matrix degradation, autophagy defect and excessive apoptosis of chondrocytes during OA development via suppressing the PI3K and JNK signaling pathway.
      (© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Jin J, Lv X, Wang B, Ren C, Jiang J, Chen H, Chen X, Gu M, Pan Z, Tian N, Wu A, Sun L, Gao W, Wang X, Zhang X, Wu Y, Zhou Y (2021) Limonin Inhibits IL-1β-Induced Inflammation and Catabolism in Chondrocytes and Ameliorates Osteoarthritis by Activating Nrf2. Oxid Med Cell Longev 2021: 7292512. https://doi.org/10.1155/2021/7292512.
      Diaz-Rodriguez P, Mariño C, Vázquez JA, Caeiro-Rey JR, Landin M (2021) Targeting joint inflammation for osteoarthritis management through stimulus-sensitive hyaluronic acid based intra-articular hydrogels. Mater Sci Eng C Mater Biol Appl 128:112254. https://doi.org/10.1016/j.msec.2021.112254. (PMID: 10.1016/j.msec.2021.11225434474816)
      Li Z, Huang Z, Zhang H, Lu J, Tian Y, Wei Y, Yang Y, Bai L (2021) P2X7 Receptor Induces Pyroptotic Inflammation and Cartilage Degradation in Osteoarthritis via NF-κB/NLRP3 Crosstalk. Oxid Med Cell Longev 2021: 8868361. https://doi.org/10.1155/2021/8868361.
      Minguzzi M, Cetrullo S, D’Adamo S, Silvestri Y, Flamigni F, RM Borzì (2018) Emerging Players at the Intersection of Chondrocyte Loss of Maturational Arrest, Oxidative Stress, Senescence and Low-Grade Inflammation in Osteoarthritis. Oxid Med Cell Longev 2018: 3075293. https://doi.org/10.1155/2018/3075293.
      Ni B, Pei W, Qu Y, Zhang R, Chu X, Wang Y, Huang X, You H (2021) MCC950, the NLRP3 Inhibitor, Protects against Cartilage Degradation in a Mouse Model of Osteoarthritis. Oxid Med Cell Longev 2021: 4139048. https://doi.org/10.1155/2021/4139048.
      Scanzello CR (2017) Chemokines and inflammation in osteoarthritis: insights from patients and animal models. J Orthop Res 35:735–739. https://doi.org/10.1002/jor.23471. (PMID: 10.1002/jor.23471278084455912941)
      Wang S, Deng Z, Ma Y, Jin J, Qi F, Li S, Liu C, Lyu FJ, Zheng Q (2020) The role of Autophagy and Mitophagy in Bone Metabolic Disorders. Int J Biol Sci 16:2675–2691. https://doi.org/10.7150/ijbs.46627. (PMID: 10.7150/ijbs.46627327928647415419)
      Yang H, Wen Y, Zhang M, Liu Q, Zhang H, Zhang J, Lu L, Ye T, Bai X, Xiao G, Wang M (2020) MTORC1 coordinates the autophagy and apoptosis signaling in articular chondrocytes in osteoarthritic temporomandibular joint. Autophagy 16:271–288. https://doi.org/10.1080/15548627.2019.1606647. (PMID: 10.1080/15548627.2019.160664731007149)
      Lv X, Zhao T, Dai Y, Shi M, Huang X, Wei Y, Shen J, Zhang X, Xie Z, Wang Q, Li Z, Qin D (2022) New insights into the interplay between autophagy and cartilage degeneration in osteoarthritis. Front Cell Dev Biol 10:1089668. https://doi.org/10.3389/fcell.2022.1089668. (PMID: 10.3389/fcell.2022.1089668365449019760856)
      Valenti MT, Dalle Carbonare L, Zipeto D, Mottes M (2021) Control of the Autophagy Pathway in Osteoarthritis: key regulators, therapeutic targets and therapeutic strategies. Int J Mol Sci 22. https://doi.org/10.3390/ijms22052700. (PMID: 10.3390/ijms22052700)
      Yao X, Zhang J, Jing X, Ye Y, Guo J, Sun K, Guo F (2019) Fibroblast growth factor 18 exerts anti-osteoarthritic effects through PI3K-AKT signaling and mitochondrial fusion and fission. Pharmacol Res 139:314–324. https://doi.org/10.1016/j.phrs.2018.09.026. (PMID: 10.1016/j.phrs.2018.09.02630273654)
      Zhou X, Li J, Zhou Y, Yang Z, Yang H, Li D, Zhang J, Zhang Y, Xu N, Huang Y, Jiang L (2020) Down-regulated ciRS-7/up-regulated miR-7 axis aggravated cartilage degradation and autophagy defection by PI3K/AKT/mTOR activation mediated by IL-17A in osteoarthritis. Aging 12:20163–20183. https://doi.org/10.18632/aging.103731. (PMID: 10.18632/aging.103731330995387655186)
      Jia S, Yang Y, Bai Y, Wei Y, Zhang H, Tian Y, Liu J, Bai L (2022) Mechanical stimulation protects against Chondrocyte Pyroptosis through Irisin-Induced suppression of PI3K/Akt/NF-κB Signal Pathway in Osteoarthritis. Front Cell Dev Biol 10:797855. https://doi.org/10.3389/fcell.2022.797855. (PMID: 10.3389/fcell.2022.797855353562718959944)
      Xu K, He Y, Moqbel SAA, Zhou X, Wu L, Bao J (2021) SIRT3 ameliorates osteoarthritis via regulating chondrocyte autophagy and apoptosis through the PI3K/Akt/mTOR pathway. Int J Biol Macromol 175:351–360. https://doi.org/10.1016/j.ijbiomac.2021.02.029. (PMID: 10.1016/j.ijbiomac.2021.02.02933556400)
      Lan CN, Cai WJ, Shi J, Yi ZJ (2021) MAPK inhibitors protect against early–stage osteoarthritis by activating autophagy. Mol Med Rep 24. https://doi.org/10.3892/mmr.2021.12469. (PMID: 10.3892/mmr.2021.12469)
      Shi J, Zhang C, Yi Z, Lan C (2016) Explore the variation of MMP3, JNK, p38 MAPKs, and autophagy at the early stage of osteoarthritis. IUBMB Life 68:293–302. https://doi.org/10.1002/iub.1482. (PMID: 10.1002/iub.148226873249)
      Heinonen J, Taipaleenmäki H, Roering P, Takatalo M, Harkness L, Sandholm J, Uusitalo-Järvinen H, Kassem M, Kiviranta I, Laitala-Leinonen T, AM Säämänen (2011) Snorc is a novel cartilage specific small membrane proteoglycan expressed in differentiating and articular chondrocytes. Osteoarthritis Cartilage 19:1026–1035. https://doi.org/10.1016/j.joca.2011.04.016. (PMID: 10.1016/j.joca.2011.04.01621624478)
      Hamdi TI, Gouissem (2022) Potential effect of Enterolactone and Raloxifene in reversing osteoarthritis markers in cultured human articular chondrocytes. ARP Rheumatol 1:30–41. (PMID: 35633575)
      Heinonen J, Zhang FP, Surmann-Schmitt C, Honkala S, Stock M, Poutanen M, ,AM Säämänen (2017) Defects in chondrocyte maturation and secondary ossification in mouse knee joint epiphyses due to Snorc deficiency. Osteoarthritis Cartilage 25:1132–1142. https://doi.org/10.1016/j.joca.2017.03.010. (PMID: 10.1016/j.joca.2017.03.01028323137)
      Aizah N, Chong PP, Kamarul T (2021) Early alterations of subchondral bone in the rat anterior cruciate ligament transection model of Osteoarthritis. Cartilage 13:1322s–1333s. https://doi.org/10.1177/1947603519878479. (PMID: 10.1177/194760351987847931569963)
      Wang C, Al-Ani MK, Sha Y, Chi Q, Dong N, Yang L, Xu K (2019) Psoralen protects chondrocytes, exhibits anti-inflammatory Effects on Synoviocytes, and attenuates Monosodium Iodoacetate-Induced Osteoarthritis. Int J Biol Sci 15:229–238. https://doi.org/10.7150/ijbs.28830. (PMID: 10.7150/ijbs.28830306623626329921)
      He L, Pan Y, Yu J, Wang B, Dai G, Ying X (2021) Decursin alleviates the aggravation of osteoarthritis via inhibiting PI3K-Akt and NF-kB signal pathway. Int Immunopharmacol 97:107657. https://doi.org/10.1016/j.intimp.2021.107657. (PMID: 10.1016/j.intimp.2021.10765733878544)
      Biczo G, Vegh ET, Shalbueva N, Mareninova OA, Elperin J, Lotshaw E, Gretler S, Lugea A, Malla SR, Dawson D, Ruchala P, Whitelegge J, French SW, Wen L, Husain SZ, Gorelick FS, Hegyi P, Rakonczay Z Jr, Gukovsky I,AS Gukovskaya (2018) Mitochondrial dysfunction, through impaired autophagy, leads to endoplasmic reticulum stress, deregulated lipid metabolism, and pancreatitis in animal models. Gastroenterology 154:689–703. https://doi.org/10.1053/j.gastro.2017.10.012. (PMID: 10.1053/j.gastro.2017.10.01229074451)
      Rabinovich-Nikitin I, Rasouli M, Reitz CJ, Posen I, Margulets V, Dhingra R, Khatua TN, Thliveris JA, Martino TA, LA Kirshenbaum (2021) Mitochondrial autophagy and cell survival is regulated by the circadian clock gene in cardiac myocytes during ischemic stress. Autophagy 17:3794–3812. https://doi.org/10.1080/15548627.2021.1938913. (PMID: 10.1080/15548627.2021.1938913340855898632283)
      Yao Q, Wu X, Tao C, Gong W, Chen M, Qu M, Zhong Y, He T, Chen S, G Xiao (2023) Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther 8:56. https://doi.org/10.1038/s41392-023-01330-w. (PMID: 10.1038/s41392-023-01330-w367374269898571)
      Liao S, Zheng Q, Shen H, Yang G, Xu Y, Zhang X, Ouyang H, Pan Z (2023) HECTD1-Mediated ubiquitination and degradation of Rubicon regulates Autophagy and Osteoarthritis Pathogenesis. Arthritis Rheumatol 75:387–400. https://doi.org/10.1002/art.42369. (PMID: 10.1002/art.4236936121967)
      Tong L, Yu H, Huang X, Shen J, Xiao G, Chen L, Wang H, Xing L, Chen D (2022) Current understanding of osteoarthritis pathogenesis and relevant new approaches. Bone Res 10:60. https://doi.org/10.1038/s41413-022-00226-9. (PMID: 10.1038/s41413-022-00226-9361273289489702)
      Hodgkinson T, Kelly DC, Curtin CM, ,FJ O’Brien (2022) Mechanosignalling in cartilage: an emerging target for the treatment of osteoarthritis. Nat Rev Rheumatol 18:67–84. https://doi.org/10.1038/s41584-021-00724-w. (PMID: 10.1038/s41584-021-00724-w34934171)
      Xia B, Di C, Zhang J, Hu S, Jin H, Tong P (2014) Osteoarthritis pathogenesis: a review of molecular mechanisms. Calcif Tissue Int 95:495–505. https://doi.org/10.1007/s00223-014-9917-9. (PMID: 10.1007/s00223-014-9917-9253114204747051)
      Jaiswal PK, Aljebali L, Gaumond MH, Oh CD, Yasuda H, Moffatt P (2020) Biochemical characteristics of the chondrocyte-enriched SNORC protein and its transcriptional regulation by SOX9. Sci Rep 10:7790. https://doi.org/10.1038/s41598-020-64640-x. (PMID: 10.1038/s41598-020-64640-x323853067210984)
      Motta F, Barone E, Sica A, Selmi C (2023) Inflammaging and osteoarthritis. Clin Rev Allergy Immunol 64:222–238. https://doi.org/10.1007/s12016-022-08941-1. (PMID: 10.1007/s12016-022-08941-135716253)
      Knights AJ, Redding SJ, Maerz T (2023) Inflammation in osteoarthritis: the latest progress and ongoing challenges. Curr Opin Rheumatol 35:128–134. https://doi.org/10.1097/bor.0000000000000923. (PMID: 10.1097/bor.000000000000092336695054)
      Sun K, Luo J, Jing X, Xiang W, Guo J, Yao X, Liang S, Guo F, Xu T (2021) Hyperoside ameliorates the progression of osteoarthritis: an in vitro and in vivo study. Phytomedicine 80:153387. https://doi.org/10.1016/j.phymed.2020.153387. (PMID: 10.1016/j.phymed.2020.15338733130473)
      Zhang S, Teo KYW, Chuah SJ, Lai RC, Lim SK, Toh WS (2019) MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis. Biomaterials 200:35–47. https://doi.org/10.1016/j.biomaterials.2019.02.006. (PMID: 10.1016/j.biomaterials.2019.02.00630771585)
      Sun Q, Zhen G, Li TP, Guo Q, Li Y, Su W, Xue P, Wang X, Wan M, Guan Y, Dong X, Li S, Cai M, Cao X (2021) Parathyroid hormone attenuates osteoarthritis pain by remodeling subchondral bone in mice. Elife 10. https://doi.org/10.7554/eLife.66532. (PMID: 10.7554/eLife.66532)
      Zhu J, Zhen G, An S, Wang X, Wan M, Li Y, Chen Z, Guan Y, Dong X, Hu Y, Cao X (2020) Aberrant subchondral osteoblastic metabolism modifies na(V)1.8 for osteoarthritis. Elife 9. https://doi.org/10.7554/eLife.57656. (PMID: 10.7554/eLife.57656)
      Sun Q, Zhang Y, Ding Y, Xie W, Li H, Li S, Li Y, Cai M (2022) Inhibition of PGE2 in Subchondral Bone attenuates Osteoarthritis. Cells 11. https://doi.org/10.3390/cells11172760. (PMID: 10.3390/cells11172760)
      Hu QM, Ecker (2021) Overview of MMP-13 as a Promising Target for the treatment of Osteoarthritis. Int J Mol Sci 22. https://doi.org/10.3390/ijms22041742. (PMID: 10.3390/ijms22041742)
      Yin WY, Lei (2018) Leonurine inhibits IL-1β induced inflammation in murine chondrocytes and ameliorates murine osteoarthritis. Int Immunopharmacol 65:50–59. https://doi.org/10.1016/j.intimp.2018.08.035. (PMID: 10.1016/j.intimp.2018.08.03530273917)
      Xu Z, Ke T, Zhang Y, Guo L, Chen F, He W (2021) Danshensu inhibits the IL-1β-induced inflammatory response in chondrocytes and osteoarthritis possibly via suppressing NF-κB signaling pathway. Mol Med 27:80. https://doi.org/10.1186/s10020-021-00329-9. (PMID: 10.1186/s10020-021-00329-9342847158290616)
      Li Z, Huang Z, Zhang H, Lu J, Tian Y, Piao S, Lin Z, Bai L (2021) Moderate-intensity exercise alleviates pyroptosis by promoting autophagy in osteoarthritis via the P2X7/AMPK/mTOR axis. Cell Death Discov 7:346. https://doi.org/10.1038/s41420-021-00746-z. (PMID: 10.1038/s41420-021-00746-z347592658580998)
      Loeser RF, Collins JA, Diekman BO (2016) Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol 12:412–420. https://doi.org/10.1038/nrrheum.2016.65. (PMID: 10.1038/nrrheum.2016.65271929324938009)
      Zhong G, Long H, Ma S, Shunhan Y, Li J,J Yao (2019) miRNA-335-5p relieves chondrocyte inflammation by activating autophagy in osteoarthritis. Life Sci 226:164–172. https://doi.org/10.1016/j.lfs.2019.03.071. (PMID: 10.1016/j.lfs.2019.03.07130970265)
      Wei S, Qiu T, Yao X, Wang N, Jiang L, Jia X, Tao Y, Wang Z, Pei P, Zhang J, Zhu Y, Yang G, Liu X, Liu S, X Sun (2020) Arsenic induces pancreatic dysfunction and ferroptosis via mitochondrial ROS-autophagy-lysosomal pathway. J Hazard Mater 384:121390. https://doi.org/10.1016/j.jhazmat.2019.121390. (PMID: 10.1016/j.jhazmat.2019.12139031735470)
      Zhu L, Yuan Y, Yuan L, Li L, Liu F, Liu J, Chen Y, Lu Y, Cheng J (2020) Activation of TFEB-mediated autophagy by trehalose attenuates mitochondrial dysfunction in cisplatin-induced acute kidney injury. Theranostics 10:5829–5844. https://doi.org/10.7150/thno.44051. (PMID: 10.7150/thno.44051324834227255003)
      Eitner A, Müller S, König C, Wilharm A, Raab R, Hofmann GO, Kamradt T, Schaible HG (2021) Inhibition of Inducible nitric oxide synthase prevents IL-1β-Induced mitochondrial dysfunction in human chondrocytes. Int J Mol Sci 22. https://doi.org/10.3390/ijms22052477. (PMID: 10.3390/ijms22052477)
      Eitner A, Sparing S, Kohler FC, Müller S, Hofmann GO, Kamradt T, Schaible HG, M Aurich (2022) Osteoarthritis-Induced metabolic alterations of human hip chondrocytes. Biomedicines 10. https://doi.org/10.3390/biomedicines10061349. (PMID: 10.3390/biomedicines10061349)
      Deng J, Jiang Y, Chen ZB, Rhee JW, Deng Y, Wang ZV (2023) Mitochondrial dysfunction in Cardiac Arrhythmias. Cells 12. https://doi.org/10.3390/cells12050679.
      Luis-García ER, Becerril C, Salgado-Aguayo A, Aparicio-Trejo OE, Romero Y, Flores-Soto E, Mendoza-Milla C, Montaño M, Chagoya V, Pedraza-Chaverri J, Hafidi ME, Orozco-Ibarra M, Pardo A, M Selman (2021) Mitochondrial dysfunction and alterations in mitochondrial permeability transition pore (mPTP) contribute to apoptosis resistance in idiopathic pulmonary fibrosis fibroblasts. Int J Mol Sci 22. https://doi.org/10.3390/ijms22157870. (PMID: 10.3390/ijms22157870)
      Li F, Li J, Wang PH, Yang N, Huang J, Ou J, Xu T, Zhao X, Liu T, Huang X, Wang Q, Li M, Yang L, Lin Y, Cai Y, Chen H, Zhang Q (2021) SARS-CoV-2 spike promotes inflammation and apoptosis through autophagy by ROS-suppressed PI3K/AKT/mTOR signaling. Biochim Biophys Acta Mol Basis Dis 1867:166260. https://doi.org/10.1016/j.bbadis.2021.166260. (PMID: 10.1016/j.bbadis.2021.166260344612588390448)
      Shi X, Jie L, Wu P, Zhang N, Mao J, Wang P, Yin S (2022) Calycosin mitigates chondrocyte inflammation and apoptosis by inhibiting the PI3K/AKT and NF-κB pathways. J Ethnopharmacol 297:115536. https://doi.org/10.1016/j.jep.2022.115536. (PMID: 10.1016/j.jep.2022.11553635843413)
      Xiang M, Liu T, Tian C, Ma K, Gou J, Huang R, Li S, Li Q, Xu C, Li L, Lee CH, Zhang Y (2022) Kinsenoside attenuates liver fibro-inflammation by suppressing dendritic cells via the PI3K-AKT-FoxO1 pathway. Pharmacol Res 177:106092. https://doi.org/10.1016/j.phrs.2022.106092. (PMID: 10.1016/j.phrs.2022.106092350661088776354)
      Lee JH, Ko HJ, Woo ER, Lee SK, Moon BS, Lee CW, Mandava S, Samala M, Lee J, Kim HP (2016) Moracin M inhibits airway inflammation by interrupting the JNK/c-Jun and NF-κB pathways in vitro and in vivo. Eur J Pharmacol 783:64–72. https://doi.org/10.1016/j.ejphar.2016.04.055. (PMID: 10.1016/j.ejphar.2016.04.05527138708)
      Liu B, Hou Q, Ma Y, Han X (2020) HIPK3 mediates inflammatory cytokines and oxidative stress markers in Monocytes in a rat model of Sepsis through the JNK/c-Jun Signaling Pathway. Inflammation 43:1127–1142. https://doi.org/10.1007/s10753-020-01200-5. (PMID: 10.1007/s10753-020-01200-532356246)
      Zhao J, Wang L, Dong X, Hu X, Zhou L, Liu Q, Song B, Wu Q, Li L (2016) The c-Jun N-terminal kinase (JNK) pathway is activated in human interstitial cystitis (IC) and rat protamine sulfate induced cystitis. Sci Rep 6:19670. https://doi.org/10.1038/srep19670. (PMID: 10.1038/srep19670268833964756293)
      Lu H, Hou G, Zhang Y, Dai Y, Zhao H (2014) c-Jun transactivates Puma gene expression to promote osteoarthritis. Mol Med Rep 9:1606–1612. https://doi.org/10.3892/mmr.2014.1981. (PMID: 10.3892/mmr.2014.198124566851)
      Ye Z, Chen Y, Zhang R, Dai H, Zeng C, Zeng H, Feng H, Du G, Fang H, D Cai (2014) c-Jun N-terminal kinase - c-Jun pathway transactivates Bim to promote osteoarthritis. Can J Physiol Pharmacol 92:132–139. https://doi.org/10.1139/cjpp-2013-0228. (PMID: 10.1139/cjpp-2013-022824502636)
    • Grant Information:
      Grant No. ZX20191001 the Yunnan Traumatology and Orthopedics Clinical Medical Center; Grant No. 202102AA310068 the Grants from Yunnan Orthopedics and Sports Rehabilitation Clinical Medicine Research Center; Grant No. 202005AD160146 Technical Innovation Talents Training Object Project
    • Contributed Indexing:
      Keywords: Autophagy; Chondrocytes; Extracellular matrix degradation; Osteoarthritis; Small novel rich in cartilage
    • Accession Number:
      0 (Interleukin-1beta)
    • Publication Date:
      Date Created: 20230902 Date Completed: 20240903 Latest Revision: 20240903
    • Publication Date:
      20240903
    • Accession Number:
      10.1007/s11010-023-04842-9
    • Accession Number:
      37659033