SARS-CoV-2 seroprevalence and vaccine coverage from August to November 2021: A nationally representative survey in Mexico.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Corporate Authors:
    • Source:
      Publisher: Wiley-Liss Country of Publication: United States NLM ID: 7705876 Publication Model: Print Cited Medium: Internet ISSN: 1096-9071 (Electronic) Linking ISSN: 01466615 NLM ISO Abbreviation: J Med Virol Subsets: MEDLINE
    • Publication Information:
      Publication: New York Ny : Wiley-Liss
      Original Publication: New York, Liss.
    • Subject Terms:
    • Abstract:
      We aimed to estimate self-reported vaccine coverage and SARS-CoV-2 anti-N and anti-S seroprevalence in Mexico overall and for five vaccine types. We used a nationally representative survey with 7236 dried blood spot samples for adults 18 years and older collected from August to November 2021. Anti-N and anti-S seroprevalence were estimated adjusting for the sensitivity and specificity of the immunoassay test. A multivariate Poisson regression model was used to estimate seroprevalence by vaccine type and by age group adjusting for confounders and test performance. Vaccination coverage was 74%, being higher in women compared to men, high socioeconomic status (SES) compared to low and middle SES, graduates compared to people with high school, and formal workers compared to other employment statuses. Anti-N seroprevalence was 59.2%, compared to 84.1% anti-S seroprevalence. Anti-S seroprevalence was higher for vaccinated than unvaccinated participants. All vaccines were associated with more than 70% anti-S seroprevalence, with the lowest being observed for CoronaVac and Ad5-nCoV. Fully vaccinated participants over 60 years presented a lower seroprevalence (77.6%) compared to younger adults (91.1%), with larger differences for ChAdOx1 and CoronaVac vaccines. Between August and November 2021, three out of four Mexican adults had been vaccinated. Vaccination was associated with a higher positivity to anti-S antibodies. While antibodies do not reflect immunity, our results suggest that booster doses should be offered to people over 60 years of age and to adults who received Ad5-nCoV or CoronaVac as primary vaccination schemes.
      (© 2023 The Authors. Journal of Medical Virology published by Wiley Periodicals LLC.)
    • References:
      Cheng MP, Yansouni CP, Basta NE, et al. Serodiagnostics for severe acute respiratory syndrome-related Coronavirus 2: a narrative review. Ann Intern Med. 2020;173(6):450-460. doi:10.7326/M20-2854.
      Secretaria de Salud. Información de la vacuna-Vacuna Covid. 2022. Accessed June 13, 2022. http://vacunacovid.gob.mx/wordpress/informacion-de-la-vacuna/.
      Basto-Abreu A, Carnalla M, Torres-Ibarra L, et al. Nationally representative SARS-CoV-2 antibody prevalence estimates after the first epidemic wave in Mexico. Nat Commun. 2022;13(1):589. doi:10.1038/s41467-022-28232-9.
      Dirección General de Epidemiología. COVID-19, México. Datos epidemiológicos. 2022. Accessed June 30, 2022. https://covid19.sinave.gob.mx/.
      Carnalla M, Basto-Abreu A, Stern D, et al. Acceptance, refusal and hesitancy of Covid-19 vaccination in Mexico: Ensanut 2020 Covid-19. Salud Publica Mex. 2021;63(5):598-606. doi:10.21149/12696.
      Secretaría de Salud. COVID-19 MÉXICO Comunicado Técnico Diario. 2021. Accessed August 30, 2022. https://www.gob.mx/cms/uploads/attachment/file/683541/2021.11.25_17h00_ComunicadoTecnicoDiario_Covid19.pdf.
      Wei J, Stoesser N, Matthews PC, et al. Antibody responses to SARS-CoV-2 vaccines in 45,965 adults from the general population of the United Kingdom. Nat Microbiol. 2021;6(9):1140-1149. doi:10.1038/s41564-021-00947-3.
      Sauré D, O'Ryan M, Torres JP, Zuniga M, Santelices E, Basso LJ. Dynamic IgG seropositivity after rollout of CoronaVac and BNT162b2 COVID-19 vaccines in Chile: a sentinel surveillance study. Lancet Infect Dis. 2022;22(1):56-63. doi:10.1016/S1473-3099(21)00479-5.
      Chahla RE, Tomas-Grau RH, Cazorla SI, et al. Long-term analysis of antibodies elicited by SPUTNIK V: a prospective cohort study in Tucumán, Argentina. Lancet Reg Health Am. 2022;6(100123):100123. doi:10.1016/j.lana.2021.100123.
      Doria-Rose N, Suthar MS, Makowski M, et al. Antibody persistence through 6 months after the second dose of mRNA-1273 vaccine for covid-19. N Engl J Med. 2021;384(23):2259-2261. doi:10.1056/NEJMc2103916.
      Sakamoto A, Yoshimura M, Itoh R, et al. Longitudinal dynamics of SARS-CoV-2 IgG antibody responses after the two-dose regimen of BNT162b2 vaccination and the effect of a third dose on healthcare workers in Japan. Vaccines. 2022;10(6):830. doi:10.3390/vaccines10060830.
      Mastroianni F, Guida P, Bellanova G, et al. SARS-CoV-2 antibody response after BNT162b2 mRNA vaccine in healthcare workers: nine-month of follow-up. Vaccine X. 2022;11(100175):100175. doi:10.1016/j.jvacx.2022.100175.
      Sanchez L, Oviedo Rouco S, Pifano M, et al. Antibody durability at 1 year after Sputnik V vaccination. Lancet Infect Dis. 2022;22(5):589-590. doi:10.1016/S1473-3099(22)00176-1.
      Levin EG, Lustig Y, Cohen C, et al. Waning immune humoral response to BNT162b2 covid-19 vaccine over 6 months. N Engl J Med. 2021;385(24):e84. doi:10.1056/NEJMoa2114583.
      Romero Martínez M, Barrientos-Gutiérrez T, Cuevas-Nasu L, et al. Metodología de la Encuesta Nacional de Salud y Nutrición 2021. Salud Publica Mex. 2021;63(6,v-Dic):813-818. doi:10.21149/13348.
      Cholette F, Mesa C, Harris A, et al. Dried blood spot specimens for SARS-CoV-2 antibody testing: a multi-site, multi-assay comparison. PLoS One. 2021;16(12):e0261003. doi:10.1371/journal.pone.0261003.
      Martínez-Barnetche J, Carnalla M, Gaspar-Castillo C, et al. Comparable diagnostic accuracy of SARS-CoV-2 Spike RBD and N-specific IgG tests to determine pre-vaccination nation-wide baseline seroprevalence in Mexico. Sci Rep. 2022;12(1):18014. doi:10.1038/s41598-022-22146-8.
      Carnero R, Marcos L. Calendarios de vacunación Ediciones Universidad de Salamanca Vacunando: ¡dos Siglos y Sumando! 2019:40. doi:10.2307/j.ctvfc5544.
      Rogan WJ, Gladen B. Estimating prevalence from the results of a screening test. Am J Epidemiol. 1978;107(1):71-76. doi:10.1093/oxfordjournals.aje.a112510.
      Jones JM, Opsomer JD, Stone M, et al. Updated US infection- and vaccine-induced SARS-CoV-2 seroprevalence estimates based on blood donations, July 2020-December 2021. JAMA. 2022;328:298. doi:10.1001/jama.2022.9745.
      Clarke KEN, Jones JM, Deng Y, et al. Seroprevalence of infection-induced SARS-CoV-2 antibodies-United States, September 2021-February 2022. MMWR Morb Mortal Wkly Rep. 2022;71(17):606-608. doi:10.15585/mmwr.mm7117e3.
      Heinz FX, Stiasny K. Distinguishing features of current COVID-19 vaccines: knowns and unknowns of antigen presentation and modes of action. NPJ Vaccines. 2021;6(1):104. doi:10.1038/s41541-021-00369-6.
      Andeweg SP, de Gier B, Eggink D, et al. Protection of COVID-19 vaccination and previous infection against Omicron BA.1, BA.2 and Delta SARS-CoV-2 infections. Nat Commun. 2022;13(1):4738. doi:10.1038/s41467-022-31838-8.
      Stringhini S, Zaballa ME, Pullen N, et al. Seroprevalence of anti-SARS-CoV-2 antibodies 6 months into the vaccination campaign in Geneva, Switzerland, 1 June to 7 July 2021. Euro Surveill. 2021;26(43):313-319. doi:10.2807/1560-7917.ES.2021.26.43.2100830.
      Jones JM, Stone M, Sulaeman H, et al. Estimated US infection- and vaccine-induced SARS-CoV-2 seroprevalence based on blood donations, July 2020-May 2021. JAMA. 2021;326(14):1400-1409. doi:10.1001/jama.2021.15161.
      Cable R, Coleman C, Glatt T, et al. Estimates of prevalence of anti-SARS-CoV-2 antibodies among blood donors in eight provinces of South Africa in November 2021. Res Sq. Published online February 15 2022. doi:10.21203/rs.3.rs-1359658/v1.
      Vermeulen M, Mhlanga L, Sykes W, et al. Prevalence of anti-SARS-CoV-2 antibodies among blood donors in South Africa during the period January-May 2021. Research Square. Published online August 2, 2021. doi:10.21203/rs.3.rs-690372/v2.
      Kislaya I, Gonçalves P, Gómez V, et al. SARS-CoV-2 seroprevalence in Portugal following the third epidemic wave: results of the second National Serological Survey (ISN2COVID-19). Infect Dis. 2022;54(6):418-424. doi:10.1080/23744235.2021.2025421.
      Guillén B México confirma el primer caso de ómicron en el país. Ediciones EL PAÍS S.L. Published December 3, 2021. Accessed August 30, 2022. https://elpais.com/mexico/2021-12-03/mexico-confirma-el-primer-caso-de-omicron-en-el-pais.html.
      Kahn K, Pettifor A, Mataboge P, et al. COVID-19 vaccine hesitancy in rural South Africa: deepening understanding to increase uptake and access. J Glob Health. 2022;12(05013):05013. doi:10.7189/jogh.12.05013.
      Halvorsrud K, Shand J, Weil LG, et al. Tackling barriers to COVID-19 vaccine uptake in London: a mixed-methods evaluation. J Public Health (Oxf). Published online April 4 2022;45:393. doi:10.1093/pubmed/fdac038.
      COVID-19 vaccine efficacy summary. Institute for Health Metrics and Evaluation. Published March 4, 2021. Accessed April 1, 2023. https://www.healthdata.org/covid/covid-19-vaccine-efficacy-summary.
      The CanSino Biologics Ad5-nCoV-S [recombinant] COVID-19 vaccine: what you need to know. Accessed April 17, 2023. https://www.who.int/news-room/feature-stories/detail/the--cansino-biologics-ad5-ncov-s--recombinant---covid-19-vaccine--what-you-need-to-know.
      The Sinovac-CoronaVac COVID-19 vaccine: What you need to know. Accessed April 17, 2023. https://www.who.int/news-room/feature-stories/detail/the-sinovac-covid-19-vaccine-what-you-need-to-know.
      Feng S, Phillips DJ, White T, et al. Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection. Nat Med. 2021;27(11):2032-2040. doi:10.1038/s41591-021-01540-1.
      Krammer F. A correlate of protection for SARS-CoV-2 vaccines is urgently needed. Nat Med. 2021;27(7):1147-1148. doi:10.1038/s41591-021-01432-4.
      Bajema KL, Dahl RM, Evener SL, et al. Comparative effectiveness and antibody responses to Moderna and Pfizer-BioNTech COVID-19 vaccines among hospitalized veterans-five Veterans Affairs medical centers, United States, February 1-September 30, 2021. MMWR Morb Mortal Wkly Rep. 2021;70(49):1700-1705. doi:10.15585/mmwr.mm7049a2.
      Khoury DS, Schlub TE, Cromer D, et al. Correlates of protection, thresholds of protection, and immunobridging among persons with SARS-CoV-2 infection. Emerging Infect Dis. 2023;29(2):381-388. doi:10.3201/eid2902.221422.
      Pérez-Padilla JR, Mora-Pavón A, Hernández-Cárdenas CM, et al. Efectividad de las vacunas contra SARS-CoV-2 en hospitalizados con fallas vacunales en 10 hospitales de la CCINSHAE. Salud Publica Mex. 2022;64(2):131-136. doi:10.21149/13521.
      Ward H, Whitaker M, Flower B, et al. Population antibody responses following COVID-19 vaccination in 212,102 individuals. Nat Commun. 2022;13(1):907. doi:10.1038/s41467-022-28527-x.
      Zhu FC, Guan XH, Li YH, et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2020;396(10249):479-488. doi:10.1016/S0140-6736(20)31605-6.
      Secretaría de Educación Pública. Boletín SEP no. 6. Presenta SEP proceso de refuerzo de vacunación al personal educativo del país. January 2022. Accessed June 2022. https://www.gob.mx/sep/es/articulos/boletin-sep-no-6-presenta-sep-proceso-de-refuerzo-de-vacunacion-al-personal-educativo-del-pais?idiom=es.
      Bartleson JM, Radenkovic D, Covarrubias AJ, Furman D, Winer DA, Verdin E. SARS-CoV-2, COVID-19 and the aging immune system. Nat Aging. 2021;1(9):769-782. doi:10.1038/s43587-021-00114-7.
      Stone M, Grebe E, Sulaeman H, et al. Evaluation of commercially available high-throughput SARS-CoV-2 serologic assays for serosurveillance and related applications. Emerging Infect Dis. 2022;28(3):672-683. doi:10.3201/eid2803.211885.
      Samanovic MI, Oom AL, Cornelius AR, et al. Vaccine-acquired SARS-CoV-2 immunity versus infection-acquired immunity: a comparison of three COVID-19 vaccines. Vaccines. 2022;10(12):2152. doi:10.3390/vaccines10122152.
      Hilden J. A further comment on “Estimating prevalence from the results of a screening test”. Am J Epidemiol. 1979;109(6):721-723. doi:10.1093/oxfordjournals.aje.a112737.
      Hernán MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2020. Accessed June 29, 2022. https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/.
    • Grant Information:
      NU50CK000495 United States CK NCEZID CDC HHS
    • Contributed Indexing:
      Keywords: Covid-19; immunity; seroprevalence; vaccines
    • Accession Number:
      0 (sinovac COVID-19 vaccine)
      0 (Vaccines)
    • Publication Date:
      Date Created: 20230824 Date Completed: 20230825 Latest Revision: 20230907
    • Publication Date:
      20231215
    • Accession Number:
      10.1002/jmv.29038
    • Accession Number:
      37615363