Integrated Model of IGF-I Mediated Biosynthesis in a Deformed Articular Cartilage.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      Maintenance of articular cartilage’s functional mechanical properties ultimately depends on the balance between the extracellular matrix component biosynthesis, degradation, and loss. A variety of factors are known to modulate the rate of cartilage matrix synthesis (e.g., growth factors and stress/strain environment). In the present study, we develop an integrated mathematical model that quantifies biological processes within cartilage tissue modulated by insulin-like growth factors (IGFs). Specifically, the model includes IGF transport through a deforming porous media, competitive binding to binding proteins and cell receptors, and matrix macromolecule biosynthesis—particularly glycosaminoglycans (GAGs). These newly synthesized matrix molecules are then able to modify the material properties of cartilage. The model is used to investigate the effect of synovial fluid IGF-I concentration on cartilage homeostasis. The results presented here suggest that GAG production can be rapidly “switched on” when the concentration of IGF-I reaches a certain threshold, while it is predicted that high receptor concentration leads to heterogeneous matrix production. As for the combined effect of IGF-I and mechanical loading on biosynthesis, the current model predicts that a loading regime with high strain magnitude (e.g., 10%) can achieve a synergistic effect on matrix protein production. Furthermore, dynamic loading is seen to promote spatial homogeneous GAG production. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Journal of Engineering Mechanics is the property of American Society of Civil Engineers and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)