Pseudoneglect during object search in naturalistic scenes.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Nuthmann A;Nuthmann A;Nuthmann A; Clark CNL; Clark CNL
  • Source:
    Experimental brain research [Exp Brain Res] 2023 Sep; Vol. 241 (9), pp. 2345-2360. Date of Electronic Publication: 2023 Aug 23.
  • Publication Type:
    Journal Article
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Springer Verlag Country of Publication: Germany NLM ID: 0043312 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1106 (Electronic) Linking ISSN: 00144819 NLM ISO Abbreviation: Exp Brain Res Subsets: MEDLINE
    • Publication Information:
      Original Publication: Berlin : Springer Verlag
    • Subject Terms:
    • Abstract:
      Pseudoneglect, that is the tendency to pay more attention to the left side of space, is typically assessed with paper-and-pencil tasks, particularly line bisection. In the present study, we used an everyday task with more complex stimuli. Subjects' task was to look for pre-specified objects in images of real-world scenes. In half of the scenes, the search object was located on the left side of the image (L-target); in the other half of the scenes, the target was on the right side (R-target). To control for left-right differences in the composition of the scenes, half of the scenes were mirrored horizontally. Eye-movement recordings were used to track the course of pseudoneglect on a millisecond timescale. Subjects' initial eye movements were biased to the left of the scene, but less so for R-targets than for L-targets, indicating that pseudoneglect was modulated by task demands and scene guidance. We further analyzed how horizontal gaze positions changed over time. When the data for L- and R-targets were pooled, the leftward bias lasted, on average, until the first second of the search process came to an end. Even for right-side targets, the gaze data showed an early left-bias, which was compensated by adjustments in the direction and amplitude of later saccades. Importantly, we found that pseudoneglect affected search efficiency by leading to less efficient scan paths and consequently longer search times for R-targets compared with L-targets. It may therefore be prudent to take spatial asymmetries into account when studying visual search in scenes.
      (© 2023. The Author(s).)
    • References:
      Afsari Z, Ossandón JP, König P (2016) The dynamic effect of reading direction habit on spatial asymmetry of image perception. J Vis 16(11):8. https://doi.org/10.1167/16.11.8. (PMID: 10.1167/16.11.827611064)
      Afsari Z, Keshava A, Ossandón JP, König P (2018) Interindividual differences among native right-to-left readers and native left-to-right readers during free viewing task. Vis Cogn 26(6):430–441. https://doi.org/10.1080/13506285.2018.1473542. (PMID: 10.1080/13506285.2018.1473542)
      Baayen RH, Davidson DJ, Bates DM (2008) Mixed-effects modeling with crossed random effects for subjects and items. J Mem Lang 59(4):390–412. https://doi.org/10.1016/j.jml.2007.12.005. (PMID: 10.1016/j.jml.2007.12.005)
      Badcock JC, Whitworth FA, Badcock DR, Lovegrove WJ (1990) Low-frequency filtering and the processing of local—global stimuli. Perception 19(5):617–629. https://doi.org/10.1068/p190617. (PMID: 10.1068/p1906172102996)
      Barr DJ, Levy R, Scheepers C, Tily HJ (2013) Random effects structure for confirmatory hypothesis testing: keep it maximal. J Mem Lang 68(3):255–278. https://doi.org/10.1016/j.jml.2012.11.001. (PMID: 10.1016/j.jml.2012.11.001)
      Bartolomeo P, Chokron S (2002) Orienting of attention in left unilateral neglect. Neurosci Biobehav Rev 26(2):217–234. https://doi.org/10.1016/s0149-7634(01)00065-3. (PMID: 10.1016/s0149-7634(01)00065-311856560)
      Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48. https://doi.org/10.18637/jss.v067.i01. (PMID: 10.18637/jss.v067.i01)
      Biederman I, Glass AL, Stacy EW (1973) Searching for objects in real-world scenes. J Exp Psychol 97(1):22–27. https://doi.org/10.1037/h0033776. (PMID: 10.1037/h00337764704195)
      Bowers D, Heilman KM (1980) Pseudoneglect: effects of hemispace on a tactile line bisection task. Neuropsychologia 18(4–5):491–498. https://doi.org/10.1016/0028-3932(80)90151-7. (PMID: 10.1016/0028-3932(80)90151-76777712)
      Brockmole JR, Henderson JM (2006) Recognition and attention guidance during contextual cueing in real-world scenes: evidence from eye movements. Q J Exp Psychol 59(7):1177–1187. https://doi.org/10.1080/17470210600665996. (PMID: 10.1080/17470210600665996)
      Brooks JL, Della Sala S, Darling S (2014) Representational pseudoneglect: a review. Neuropsychol Rev 24(2):148–165. https://doi.org/10.1007/s11065-013-9245-2. (PMID: 10.1007/s11065-013-9245-224414221)
      Castelhano MS, Heaven C (2010) The relative contribution of scene context and target features to visual search in scenes. Atten Percept Psychophys 72(5):1283–1297. https://doi.org/10.3758/app.72.5.1283. (PMID: 10.3758/app.72.5.128320601710)
      Castelhano MS, Mack ML, Henderson JM (2009) Viewing task influences eye movement control during active scene perception. J Vis 9(3):6. https://doi.org/10.1167/9.3.6. (PMID: 10.1167/9.3.6)
      Chiffi K, Diana L, Hartmann M, Cazzoli D, Bassetti CL, Müri RM, Eberhard-Moscicka AK (2021) Spatial asymmetries (“pseudoneglect”) in free visual exploration—modulation of age and relationship to line bisection. Exp Brain Res 239(9):2693–2700. https://doi.org/10.1007/s00221-021-06165-x. (PMID: 10.1007/s00221-021-06165-x342182998448707)
      Colby CL (1998) Action-oriented spatial reference frames in cortex. Neuron 20(1):15–24. https://doi.org/10.1016/s0896-6273(00)80429-8. (PMID: 10.1016/s0896-6273(00)80429-89459438)
      Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3(3):201–215. https://doi.org/10.1038/nrn755. (PMID: 10.1038/nrn75511994752)
      Cousineau D (2005) Confidence intervals in within-subject designs: a simpler solution to Loftus and Masson’s method. Tut Quant Meth Psychol 1(1):42–45. https://doi.org/10.20982/tqmp.01.1.p042. (PMID: 10.20982/tqmp.01.1.p042)
      Cox JA, Aimola Davies AM (2020) Keeping an eye on visual search patterns in visuospatial neglect: a systematic review. Neuropsychologia 146:107547. https://doi.org/10.1016/j.neuropsychologia.2020.107547. (PMID: 10.1016/j.neuropsychologia.2020.10754732610098)
      Dickinson CA, Intraub H (2009) Spatial asymmetries in viewing and remembering scenes: consequences of an attentional bias? Atten Percept Psychophys 71(6):1251–1262. https://doi.org/10.3758/app.71.6.1251. (PMID: 10.3758/app.71.6.1251196333412792631)
      Eckstein MP, Drescher BA, Shimozaki SS (2006) Attentional cues in real scenes, saccadic targeting, and Bayesian priors. Psychol Sci 17(11):973–980. https://doi.org/10.1111/j.1467-9280.2006.01815.x. (PMID: 10.1111/j.1467-9280.2006.01815.x17176430)
      English MCW, Maybery MT, Visser TAW (2021) Magnitude of sex differences in visual search varies with target eccentricity. Psychon Bull Rev 28(1):178–188. https://doi.org/10.3758/s13423-020-01796-7. (PMID: 10.3758/s13423-020-01796-732875533)
      Engmann S, 't Hart BM, Sieren T, Onat S, König P, Einhäuser W (2009) Saliency on a natural scene background: effects of color and luminance contrast add linearly. Atten Percept Psychophys 71(6):1337–1352. https://doi.org/10.3758/app.71.6.1337. (PMID: 10.3758/app.71.6.133719633349)
      Foulsham T, Kingstone A (2010) Asymmetries in the direction of saccades during perception of scenes and fractals: effects of image type and image features. Vision Res 50(8):779–795. https://doi.org/10.1016/j.visres.2010.01.019. (PMID: 10.1016/j.visres.2010.01.01920144645)
      Foulsham T, Kingstone A, Underwood G (2008) Turning the world around: patterns in saccade direction vary with picture orientation. Vision Res 48(17):1777–1790. https://doi.org/10.1016/j.visres.2008.05.018. (PMID: 10.1016/j.visres.2008.05.01818599105)
      Foulsham T, Gray A, Nasiopoulos E, Kingstone A (2013) Leftward biases in picture scanning and line bisection: a gaze-contingent window study. Vision Res 78:14–25. https://doi.org/10.1016/j.visres.2012.12.001. (PMID: 10.1016/j.visres.2012.12.00123257282)
      Foulsham T, Frost E, Sage L (2018) Stable individual differences predict eye movements to the left, but not handedness or line bisection. Vision Res 144:38–46. https://doi.org/10.1016/j.visres.2018.02.002. (PMID: 10.1016/j.visres.2018.02.00229499212)
      Friedrich TE, Hunter PV, Elias LJ (2018) The trajectory of pseudoneglect in adults: a systematic review. Neuropsychol Rev 28(4):436–452. https://doi.org/10.1007/s11065-018-9392-6. (PMID: 10.1007/s11065-018-9392-6304604366326998)
      Gigliotta O, Seidel Malkinson T, Miglino O, Bartolomeo P (2017) Pseudoneglect in visual search: behavioral evidence and connectional constraints in simulated neural circuitry. eNeuro 4(6):e0154-17.2017. https://doi.org/10.1523/eneuro.0154-17.2017. (PMID: 10.1523/eneuro.0154-17.2017)
      Hartmann M, Sommer NR, Diana L, Müri RM, Eberhard-Moscicka AK (2019) Further to the right: viewing distance modulates attentional asymmetries (‘pseudoneglect’) during visual exploration. Brain Cogn 129:40–48. https://doi.org/10.1016/j.bandc.2018.11.008. (PMID: 10.1016/j.bandc.2018.11.00830471991)
      Hellige JB (1996) Hemispheric asymmetry for visual information processing. Acta Neurobiol Exp 56(1):485–497.
      Henderson JM, Weeks PA Jr, Hollingworth A (1999) The effects of semantic consistency on eye movements during complex scene viewing. J Exp Psychol Hum Percept Perform 25(1):210–228. https://doi.org/10.1037//0096-1523.25.1.210. (PMID: 10.1037//0096-1523.25.1.210)
      Holmqvist K, Nyström M, Andersson R, Dewhurst R, Jarodzka H, van de Weijer J (2011) Eye tracking: a comprehensive guide to methods and measures. Oxford University Press, UK.
      Jaeger TF (2008) Categorical data analysis: away from ANOVAs (transformation or not) and towards logit mixed models. J Mem Lang 59(4):434–446. https://doi.org/10.1016/j.jml.2007.11.007. (PMID: 10.1016/j.jml.2007.11.007198849612613284)
      Jewell G, McCourt ME (2000) Pseudoneglect: a review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia 38(1):93–110. https://doi.org/10.1016/s0028-3932(99)00045-7. (PMID: 10.1016/s0028-3932(99)00045-710617294)
      Kauffmann L, Ramanoël S, Peyrin C (2014) The neural bases of spatial frequency processing during scene perception. Front Integr Neurosci 8:37. https://doi.org/10.3389/fnint.2014.00037. (PMID: 10.3389/fnint.2014.00037248472264019851)
      Kirkby JA, Webster LAD, Blythe HI, Liversedge SP (2008) Binocular coordination during reading and non-reading tasks. Psychol Bull 134(5):742–763. https://doi.org/10.1037/a0012979. (PMID: 10.1037/a001297918729571)
      Koehler K, Guo F, Zhang S, Eckstein MP (2014) What do saliency models predict? J Vis 14(3):14. https://doi.org/10.1167/14.3.14. (PMID: 10.1167/14.3.14246181073954044)
      Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest package: tests in linear mixed effects models. J Stat Softw 82(13):1–26. https://doi.org/10.18637/jss.v082.i13. (PMID: 10.18637/jss.v082.i13)
      Lauer T, Võ ML-H (2022) The ingredients of scenes that affect object search and perception. In: Ionescu B, Bainbridge WA, Murray N (eds) Human perception of visual information: psychological and computational perspectives. Springer International Publishing, pp 1–32.
      Machner B, Könemund I, von der Gablentz J, Bays PM, Sprenger A (2018) The ipsilesional attention bias in right-hemisphere stroke patients as revealed by a realistic visual search task: neuroanatomical correlates and functional relevance. Neuropsychology 32(7):850–865. https://doi.org/10.1037/neu0000493. (PMID: 10.1037/neu0000493303210356237270)
      Malcolm GL, Henderson JM (2010) Combining top-down processes to guide eye movements during real-world scene search. J Vis 10(2):4. https://doi.org/10.1167/10.2.4. (PMID: 10.1167/10.2.4)
      Matuschek H, Kliegl R, Vasishth S, Baayen H, Bates D (2017) Balancing Type I error and power in linear mixed models. J Mem Lang 94:305–315. https://doi.org/10.1016/j.jml.2017.01.001. (PMID: 10.1016/j.jml.2017.01.001)
      McCourt ME (2001) Performance consistency of normal observers in forced-choice tachistoscopic visual line bisection. Neuropsychologia 39(10):1065–1076. https://doi.org/10.1016/s0028-3932(01)00044-6. (PMID: 10.1016/s0028-3932(01)00044-611440759)
      Miellet S, Zhou X, He L, Rodger H, Caldara R (2010) Investigating cultural diversity for extrafoveal information use in visual scenes. J Vis 10(6):21. https://doi.org/10.1167/10.6.21. (PMID: 10.1167/10.6.2120884570)
      Mills M, Hollingworth A, Van der Stigchel S, Hoffman L, Dodd MD (2011) Examining the influence of task set on eye movements and fixations. J Vis 11(8):17. https://doi.org/10.1167/11.8.17. (PMID: 10.1167/11.8.1721799023)
      Morey RD (2008) Confidence intervals from normalized data: a correction to Cousineau (2005). Tut Quant Meth Psychol 4(2):61–64. https://doi.org/10.20982/tqmp.04.2.p061. (PMID: 10.20982/tqmp.04.2.p061)
      Müri RM, Cazzoli D, Nyffeler T, Pflugshaupt T (2009) Visual exploration pattern in hemineglect. Psychol Res 73(2):147–157. https://doi.org/10.1007/s00426-008-0204-0. (PMID: 10.1007/s00426-008-0204-019084997)
      Nicholls MER, Roden S, Thomas NA, Loetscher T, Spence CJ, Forte JD (2014) Close to me: the effect of asymmetrical environments on spatial attention. Ergonomics 57(6):876–885. https://doi.org/10.1080/00140139.2014.899633. (PMID: 10.1080/00140139.2014.89963324665985)
      Nicholls MER, Hobson A, Petty J, Churches O, Thomas NA (2017) The effect of cerebral asymmetries and eye scanning on pseudoneglect for a visual search task. Brain Cogn 111:134–143. https://doi.org/10.1016/j.bandc.2016.11.006. (PMID: 10.1016/j.bandc.2016.11.00627923149)
      Nuthmann A (2014) How do the regions of the visual field contribute to object search in real-world scenes? Evidence from eye movements. J Exp Psychol Hum Percept Perform 40(1):342–360. https://doi.org/10.1037/a0033854. (PMID: 10.1037/a003385423937216)
      Nuthmann A (2017) Fixation durations in scene viewing: modeling the effects of local image features, oculomotor parameters, and task. Psychon Bull Rev 24(2):370–392. https://doi.org/10.3758/s13423-016-1124-4. (PMID: 10.3758/s13423-016-1124-427480268)
      Nuthmann A, Henderson JM (2010) Object-based attentional selection in scene viewing. J Vis 10(8):20. https://doi.org/10.1167/10.8.20. (PMID: 10.1167/10.8.2020884595)
      Nuthmann A, Malcolm GL (2016) Eye guidance during real-world scene search: the role color plays in central and peripheral vision. J Vis 16(2):3. https://doi.org/10.1167/16.2.3. (PMID: 10.1167/16.2.326824640)
      Nuthmann A, Matthias E (2014) Time course of pseudoneglect in scene viewing. Cortex 52:113–119. https://doi.org/10.1016/j.cortex.2013.11.007. (PMID: 10.1016/j.cortex.2013.11.00724388005)
      Nuthmann A, Einhäuser W, Schütz I (2017) How well can saliency models predict fixation selection in scenes beyond central bias? A new approach to model evaluation using generalized linear mixed models. Front Hum Neurosci 11:491. https://doi.org/10.3389/fnhum.2017.00491. (PMID: 10.3389/fnhum.2017.00491291630925671469)
      Nuthmann A, Clayden AC, Fisher RB (2021) The effect of target salience and size in visual search within naturalistic scenes under degraded vision. J Vis 21(4):2. https://doi.org/10.1167/jov.21.4.2. (PMID: 10.1167/jov.21.4.2337926168024777)
      Ossandón JP, Onat S, König P (2014) Spatial biases in viewing behavior. J Vis 14(2):20. https://doi.org/10.1167/14.2.20. (PMID: 10.1167/14.2.2024569986)
      Ossandón JP, König P, Heed T (2015) Irrelevant tactile stimulation biases visual exploration in external coordinates. Sci Rep 5:10664. https://doi.org/10.1038/srep10664. (PMID: 10.1038/srep10664260216124448131)
      Over EAB, Hooge ITC, Vlaskamp BNS, Erkelens CJ (2007) Coarse-to-fine eye movement strategy in visual search. Vision Res 47(17):2272–2280. https://doi.org/10.1016/j.visres.2007.05.002. (PMID: 10.1016/j.visres.2007.05.00217617434)
      Pajak M, Nuthmann A (2013) Object-based saccadic selection during scene perception: evidence from viewing position effects. J Vis 13(5):2. https://doi.org/10.1167/13.5.2. (PMID: 10.1167/13.5.223547104)
      Pannasch S, Helmert JR, Roth K, Herbold A-K, Walter H (2008) Visual fixation durations and saccade amplitudes: shifting relationship in a variety of conditions. J Eye Mov Res 2(2):4. https://doi.org/10.16910/jemr.2.2.4. (PMID: 10.16910/jemr.2.2.4)
      Pflugshaupt T, Almoslöchner Bopp S, Heinemann D, Mosimann UP, von Wartburg R, Nyffeler T, Hess CW, Müri RM (2004) Residual oculomotor and exploratory deficits in patients with recovered hemineglect. Neuropsychologia 42(9):1203–1211. https://doi.org/10.1016/j.neuropsychologia.2004.02.002. (PMID: 10.1016/j.neuropsychologia.2004.02.00215178172)
      Poynter W, Roberts C (2012) Hemispheric asymmetries in visual search. Laterality 17(6):711–726. https://doi.org/10.1080/1357650x.2011.626558. (PMID: 10.1080/1357650x.2011.62655823098199)
      Ptak R, Golay L, Müri RM, Schnider A (2009) Looking left with left neglect: the role of spatial attention when active vision selects local image features for fixation. Cortex 45(10):1156–1166. https://doi.org/10.1016/j.cortex.2008.10.001. (PMID: 10.1016/j.cortex.2008.10.00119038381)
      Ramzaoui H, Faure S, Spotorno S (2021) Top-down and bottom-up guidance in normal aging during scene search. Psychol Aging 36(4):433–451. https://doi.org/10.1037/pag0000485. (PMID: 10.1037/pag000048534124920)
      Schmidt K, Gamer M, Forkmann K, Bingel U (2018) Pain affects visual orientation: an eye-tracking study. J Pain 19(2):135–145. https://doi.org/10.1016/j.jpain.2017.09.005. (PMID: 10.1016/j.jpain.2017.09.00529030322)
      Scinto LFM, Pillalamarri R, Karsh R (1986) Cognitive strategies for visual search. Acta Psychol 62(3):263–292. https://doi.org/10.1016/0001-6918(86)90091-0. (PMID: 10.1016/0001-6918(86)90091-0)
      Smith TJ, Henderson JM (2009) Facilitation of return during scene viewing. Vis Cogn 17(6–7):1083–1108. https://doi.org/10.1080/13506280802678557. (PMID: 10.1080/13506280802678557)
      Spotorno S, Tatler BW (2017) The elephant in the room: inconsistency in scene viewing and representation. J Exp Psychol Hum Percept Perform 43(10):1717–1743. https://doi.org/10.1037/xhp0000456. (PMID: 10.1037/xhp000045628967780)
      Tatler BW (2007) The central fixation bias in scene viewing: selecting an optimal viewing position independently of motor biases and image feature distributions. J Vis 7(14):4. https://doi.org/10.1167/7.14.4. (PMID: 10.1167/7.14.4)
      Treisman AM, Gelade G (1980) A feature-integration theory of attention. Cogn Psychol 12(1):97–136. https://doi.org/10.1016/0010-0285(80)90005-5. (PMID: 10.1016/0010-0285(80)90005-57351125)
      Treisman A, Sato S (1990) Conjunction search revisited. J Exp Psychol Hum Percept Perform 16(3):459–478. https://doi.org/10.1037/0096-1523.16.3.459. (PMID: 10.1037/0096-1523.16.3.4592144564)
      Unema PJA, Pannasch S, Joos M, Velichkovsky BM (2005) Time course of information processing during scene perception: the relationship between saccade amplitude and fixation duration. Vis Cogn 12(3):473–494. https://doi.org/10.1080/13506280444000409. (PMID: 10.1080/13506280444000409)
      Van Kleeck MH (1989) Hemispheric differences in global versus local processing of hierarchical visual stimuli by normal subjects: new data and a meta-analysis of previous studies. Neuropsychologia 27(9):1165–1178. https://doi.org/10.1016/0028-3932(89)90099-7. (PMID: 10.1016/0028-3932(89)90099-72812299)
      Van Renswoude DR, Johnson SP, Raijmakers MEJ, Visser I (2016) Do infants have the horizontal bias? Infant Behav Dev 44:38–48. https://doi.org/10.1016/j.infbeh.2016.05.005. (PMID: 10.1016/j.infbeh.2016.05.00527281348)
      Wickham, H. (2016). ggplot2: elegant graphics for data analysis (2nd edn). Springer. https://doi.org/10.1007/978-3-319-24277-4.
      Wolfe JM (2015) Visual search. In: Fawcett JM, Risko EF, Kingstone A (eds) The handbook of attention. MIT CogNet, pp 27–56.
      Yarkoni T (2022) The generalizability crisis. Behav Brain Sci 45:e1. https://doi.org/10.1017/S0140525X20001685. (PMID: 10.1017/S0140525X20001685)
      Zelinsky GJ (2008) A theory of eye movements during target acquisition. Psychol Rev 115(4):787–835. https://doi.org/10.1037/a0013118. (PMID: 10.1037/a0013118189542052577318)
    • Contributed Indexing:
      Keywords: Attention; Eye movements; Naturalistic scenes; Pseudoneglect; Spatial biases; Visual search
    • Publication Date:
      Date Created: 20230823 Date Completed: 20230901 Latest Revision: 20240419
    • Publication Date:
      20240419
    • Accession Number:
      PMC10471692
    • Accession Number:
      10.1007/s00221-023-06679-6
    • Accession Number:
      37610677