BACE2 beyond β-processing of APP, its neuroprotective role in cerebrovascular endothelium.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley on behalf of the International Society for Neurochemistry Country of Publication: England NLM ID: 2985190R Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1471-4159 (Electronic) Linking ISSN: 00223042 NLM ISO Abbreviation: J Neurochem Subsets: MEDLINE
    • Publication Information:
      Publication: 2001- : Oxford, UK : Wiley on behalf of the International Society for Neurochemistry
      Original Publication: New York : Raven Press
    • Subject Terms:
    • Abstract:
      Several proteases are involved in the proteolytic processing of the amyloid precursor protein (APP) generating the amyloidogenic Aβ peptide, which can act as the triggering pathological effector of Alzheimer's disease (AD). Among these proteases, the β-site amyloid precursor protein cleaving enzyme 2 (BACE2) is of particular interest because it was first proposed as an alternative β-secretase to its homolog BACE1; however, accumulating evidence suggests that BACE2 acts as a non-amyloidogenic α-secretase and exerts neuroprotective effects. In this issue of J Neurochem, Katusic et al. present an interesting article reporting that BACE2 plays a role in preservation of cerebral vascular endothelial nitric oxide synthase (eNOS) function, thus exerting protective functions. Their data support that the process is mediated by the large soluble non-amyloidogenic APP fragment sAPPα through the γ-aminobutyric acid type B receptor 1, which enhances the expression of a major transcription factor for eNOS gene expression in endothelial cells, the Krüppel-like factor 2. These protective functions of BACE2 contrast with the pathogenic role of BACE1 as a key player in the AD amyloidogenic pathway. Indeed, many efforts have been invested in BACE1 inhibitors as potential disease modifiers for AD. Unfortunately, the results in clinical trials have been disappointing. In this scenario, a better understanding of the functions of BACE2, as well as the selectivity of BACE1 inhibitors with respect to other β-secretases (mainly BACE2), is crucial for the development of new therapeutic agents. Furthermore, specific cellular targeting should also be considered to improve such therapies due to the diverse balance of secretases targeting APP and the complex cross-talk between them and the generated APP fragments.
      (© 2023 International Society for Neurochemistry.)
    • Comments:
      Comment on: J Neurochem. 2023 Sep;166(6):928-942. (PMID: 37547981)
    • References:
      Ahmed, R. R., Holler, C. J., Webb, R. L., Li, F., Beckett, T. L., & Murphy, M. P. (2010). BACE1 and BACE2 enzymatic activities in Alzheimer's disease. Journal of Neurochemistry, 112(4), 1045-1053. https://doi.org/10.1111/j.1471-4159.2009.06528.x.
      Andrew, R. J., Kellett, K. A., Thinakaran, G., & Hooper, N. M. (2016). A Greek tragedy: The growing complexity of Alzheimer amyloid precursor protein proteolysis. The Journal of Biological Chemistry, 291(37), 19235-19244. https://doi.org/10.1074/jbc.R116.746032.
      Bourne, K. Z., Ferrari, D. C., Lange-Dohna, C., Rossner, S., Wood, T. G., & Perez-Polo, J. R. (2007). Differential regulation of BACE1 promoter activity by nuclear factor-kappaB in neurons and glia upon exposure to beta-amyloid peptides. Journal of Neuroscience Research, 85(6), 1194-1204. https://doi.org/10.1002/jnr.21252.
      Carello-Collar, G., Bellaver, B., Ferreira, P. C. L., Ferrari-Souza, J. P., Ramos, V. G., Therriault, J., Tissot, C., De Bastiani, M. A., Soares, C., Pascoal, T. A., Rosa-Neto, P., Souza, D. O., & Zimmer, E. R. (2023). The GABAergic system in Alzheimer's disease: A systematic review with meta-analysis. Molecular Psychiatry. https://doi.org/10.1038/s41380-023-02140-w.
      Chami, L., & Checler, F. (2012). BACE1 is at the crossroad of a toxic vicious cycle involving cellular stress and β-amyloid production in Alzheimer's disease. Molecular Neurodegeneration, 5(7), 52. https://doi.org/10.1186/1750-1326-7-52.
      de la Monte, S. M., Sohn, Y. K., Etienne, D., Kraft, J., & Wands, J. R. (2000). Role of aberrant nitric oxide synthase-3 expression in cerebrovascular degeneration and vascular-mediated injury in Alzheimer's disease. Annals of the new York Academy of Sciences, 903, 61-71. https://doi.org/10.1111/j.1749-6632.2000.tb06351.x.
      García-González, L., Pilat, D., Baranger, K., & Rivera, S. (2019). Emerging alternative proteinases in APP metabolism and Alzheimer's disease pathogenesis: A focus on MT1-MMP and MT5-MMP. Frontiers in Aging Neuroscience, 11, 244. https://doi.org/10.3389/fnagi.2019.00244.
      Hampel, H., Vassar, R., De Strooper, B., Hardy, J., Willem, M., Singh, N., Zhou, J., Yan, R., Vanmechelen, E., De Vos, A., Nisticò, R., Corbo, M., Imbimbo, B. P., Streffer, J., Voytyuk, I., Timmers, M., Tahami Monfared, A. A., Irizarry, M., Albala, B., … Vergallo, A. (2021). The β-secretase BACE1 in Alzheimer's disease. Biological Psychiatry, 89(8), 745-756. https://doi.org/10.1016/j.biopsych.2020.02.001.
      He, T., d'Uscio, L. V., & Katusic, Z. S. (2023). BACE2 deficiency impairs expression and function of endothelial nitric oxide synthase in brain endothelial cells. Journal of Neurochemistry, 166(6), 928-942. https://doi.org/10.1111/jnc.15929.
      He, T., d'Uscio, L. V., Sun, R., Santhanam, A. V. R., & Katusic, Z. S. (2022). Inactivation of BACE1 increases expression of endothelial nitric oxide synthase in cerebrovascular endothelium. Journal of Cerebral Blood Flow and Metabolism, 42(10), 1920-1932. https://doi.org/10.1177/0271678X221105683.
      Hussain, I., Powell, D. J., Howlett, D. R., Chapman, G. A., Gilmour, L., Murdock, P. R., Tew, D. G., Meek, T. D., Chapman, C., Schneider, K., Ratcliffe, S. J., Tattersall, D., Testa, T. T., Southan, C., Ryan, D. M., Simmons, D. L., Walsh, F. S., Dingwall, C., & Christie, G. (2000). ASP1 (BACE2) cleaves the amyloid precursor protein at the beta-secretase site. Molecular and Cellular Neurosciences, 16(5), 609-619. https://doi.org/10.1006/mcne.2000.0884.
      Lopez-Font, I., Boix, C. P., Zetterberg, H., Blennow, K., & Sáez-Valero, J. (2019). Characterization of cerebrospinal fluid BACE1 species. Molecular Neurobiology, 56(12), 8603-8616. https://doi.org/10.1007/s12035-019-01677-8.
      Neumann, U., Machauer, R., & Shimshek, D. R. (2019). The β-secretase (BACE) inhibitor NB-360 in preclinical models: From amyloid-β reduction to downstream disease-relevant effects. British Journal of Pharmacology, 176(18), 3435-3446. https://doi.org/10.1111/bph.14582.
      Vassar, R., Kuhn, P. H., Haass, C., Kennedy, M. E., Rajendran, L., Wong, P. C., & Lichtenthaler, S. F. (2014). Function, therapeutic potential and cell biology of BACE proteases: Current status and future prospects. Journal of Neurochemistry, 130(1), 4-28. https://doi.org/10.1111/jnc.12715.
      Voytyuk, I., Mueller, S. A., Herber, J., Snellinx, A., Moechars, D., van Loo, G., Lichtenthaler, S. F., & De Strooper, B. (2018). BACE2 distribution in major brain cell types and identification of novel substrates. Life Science Alliance, 1(1), e201800026. https://doi.org/10.26508/lsa.201800026.
      Walter, J. (2013). Fishing for function-distinct roles of Bace1 and Bace2 in zebrafish development. Journal of Neurochemistry, 127(4), 435-437. https://doi.org/10.1111/jnc.12200.
      Yan, R. (2017). Physiological functions of the β-site amyloid precursor protein cleaving enzyme 1 and 2. Frontiers in Molecular Neuroscience, 19(10), 97. https://doi.org/10.3389/fnmol.2017.00097.
      Yan, R., Munzner, J. B., Shuck, M. E., & Bienkowski, M. J. (2001). BACE2 functions as an alternative alpha-secretase in cells. The Journal of Biological Chemistry, 276(36), 34019-34027. https://doi.org/10.1074/jbc.M105583200.
      Yang, A. C., Vest, R. T., Kern, F., Lee, D. P., Agam, M., Maat, C. A., Losada, P. M., Chen, M. B., Schaum, N., Khoury, N., Toland, A., Calcuttawala, K., Shin, H., Pálovics, R., Shin, A., Wang, E. Y., Luo, J., Gate, D., Schulz-Schaeffer, W. J., … Wyss-Coray, T. (2022). A human brain vascular atlas reveals diverse mediators of Alzheimer's risk. Nature, 603(7903), 885-892. https://doi.org/10.1038/s41586-021-04369-3.
      Yeap, Y. J., Kandiah, N., Nizetic, D., & Lim, K. L. (2022). BACE2: A promising neuroprotective candidate for Alzheimer's disease. Journal of Alzheimer's Disease, 94, S159-S171. https://doi.org/10.3233/JAD-220867.
      Yonemura, Y., Futai, E., Yagishita, S., Kaether, C., & Ishiura, S. (2016). Specific combinations of presenilins and Aph1s affect the substrate specificity and activity of γ-secretase. Biochemical and Biophysical Research Communications, 478(4), 1751-1757. https://doi.org/10.1016/j.bbrc.2016.09.018.
    • Contributed Indexing:
      Keywords: Alzheimer's disease; BACE2; brain endothelial cells; eNOS; sAPPα; vasoprotection
    • Accession Number:
      EC 3.4.- (Amyloid Precursor Protein Secretases)
      0 (Amyloid beta-Protein Precursor)
      EC 3.4.23.- (Aspartic Acid Endopeptidases)
      EC 3.4.23.45 (BACE2 protein, human)
    • Publication Date:
      Date Created: 20230817 Date Completed: 20230918 Latest Revision: 20231004
    • Publication Date:
      20231215
    • Accession Number:
      10.1111/jnc.15940
    • Accession Number:
      37587672