Proximity superconductivity in atom-by-atom crafted quantum dots.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: PubMed not MEDLINE; MEDLINE
    • Publication Information:
      Publication: Basingstoke : Nature Publishing Group
      Original Publication: London, Macmillan Journals ltd.
    • Abstract:
      Gapless materials in electronic contact with superconductors acquire proximity-induced superconductivity in a region near the interface 1,2 . Numerous proposals build on this addition of electron pairing to originally non-superconducting systems and predict intriguing phases of matter, including topological 3-7 , odd-frequency 8 , nodal-point 9 or Fulde-Ferrell-Larkin-Ovchinnikov 10 superconductivity. Here we investigate the most miniature example of the proximity effect on only a single spin-degenerate quantum level of a surface state confined in a quantum corral 11 on a superconducting substrate, built atom by atom by a scanning tunnelling microscope. Whenever an eigenmode of the corral is pitched close to the Fermi energy by adjusting the size of the corral, a pair of particle-hole symmetric states enters the gap of the superconductor. We identify these as spin-degenerate Andreev bound states theoretically predicted 50 years ago by Machida and Shibata 12 , which had-so far-eluded detection by tunnel spectroscopy but were recently shown to be relevant for transmon qubit devices 13,14 . We further find that the observed anticrossings of the in-gap states are a measure of proximity-induced pairing in the eigenmodes of the quantum corral. Our results have direct consequences on the interpretation of impurity-induced in-gap states in superconductors, corroborate concepts to induce superconductivity into surface states and further pave the way towards superconducting artificial lattices.
      (© 2023. The Author(s).)
    • References:
      de Gennes, P. G. Boundary effects in superconductors. Rev. Mod. Phys. 36, 225–237 (1964). (PMID: 10.1103/RevModPhys.36.225)
      Buzdin, A. I. Proximity effects in a superconductor/ferromagnet junction. J. Phys. Chem. Solids 69, 3257–3260 (2008). (PMID: 10.1016/j.jpcs.2008.06.063)
      Schneider, L. et al. Topological Shiba bands in artificial spin chains on superconductors. Nat. Phys. 17, 943–948 (2021). (PMID: 10.1038/s41567-021-01234-y)
      Kezilebieke, S. et al. Topological superconductivity in a van der Waals heterostructure. Nature 588, 424–428 (2020). (PMID: 3332866310.1038/s41586-020-2989-y)
      Jäck, B. et al. Observation of a Majorana zero mode in a topologically protected edge channel. Science 364, 1255–1259 (2019). (PMID: 3119688210.1126/science.aax1444)
      Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008). (PMID: 1835273710.1103/PhysRevLett.100.096407)
      Palacio-Morales, A. et al. Atomic-scale interface engineering of Majorana edge modes in a 2D magnet-superconductor hybrid system. Sci. Adv. 5, eaav6600 (2019). (PMID: 31360762666021010.1126/sciadv.aav6600)
      Bergeret, F. S., Volkov, A. F. & Efetov, K. B. Odd triplet superconductivity and related phenomena in superconductor-ferromagnet structures. Rev. Mod. Phys. 77, 1321–1373 (2005). (PMID: 10.1103/RevModPhys.77.1321)
      Zhang, R.-X., Cole, W. S., Wu, X. & Das Sarma, S. Higher-order topology and nodal topological superconductivity in Fe(Se,Te) heterostructures. Phys. Rev. Lett. 123, 167001 (2019). (PMID: 3170234310.1103/PhysRevLett.123.167001)
      Eschrig, M. Spin-polarized supercurrents for spintronics: a review of current progress. Rep. Prog. Phys. 78, 104501 (2015). (PMID: 2639745610.1088/0034-4885/78/10/104501)
      Crommie, M. F., Lutz, C. P. & Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. Science 262, 218–220 (1993). (PMID: 1784186710.1126/science.262.5131.218)
      Machida, K. & Shibata, F. Bound states due to resonance scattering in superconductor. Prog. Theor. Phys. 47, 1817–1823 (1972). (PMID: 10.1143/PTP.47.1817)
      Kringhøj, A. et al. Suppressed charge dispersion via resonant tunneling in a single-channel transmon. Phys. Rev. Lett. 124, 246803 (2020). (PMID: 3263981910.1103/PhysRevLett.124.246803)
      Bargerbos, A. et al. Observation of vanishing charge dispersion of a nearly open superconducting island. Phys. Rev. Lett. 124, 246802 (2020). (PMID: 3263981310.1103/PhysRevLett.124.246802)
      Tomanic, T., Schackert, M., Wulfhekel, W., Sürgers, C. & Löhneysen, H. V. Two-band superconductivity of bulk and surface states in Ag thin films on Nb. Phys. Rev. B 94, 220503 (2016). (PMID: 10.1103/PhysRevB.94.220503)
      Potter, A. C. & Lee, P. A. Topological superconductivity and Majorana fermions in metallic surface states. Phys. Rev. B 85, 094516 (2012). (PMID: 10.1103/PhysRevB.85.094516)
      Manna, S. et al. Signature of a pair of Majorana zero modes in superconducting gold surface states. Proc. Natl Acad. Sci. USA 117, 8775–8782 (2020). (PMID: 32253317718321510.1073/pnas.1919753117)
      Chen, M. et al. Selective trapping of hexagonally warped topological surface states in a triangular quantum corral. Sci. Adv. 5, eaaw3988 (2019). (PMID: 31114808652497710.1126/sciadv.aaw3988)
      Li, J., Schneider, W.-D., Berndt, R. & Crampin, S. Electron confinement to nanoscale Ag islands on Ag(111): a quantitative study. Phys. Rev. Lett. 80, 3332–3335 (1998). (PMID: 10.1103/PhysRevLett.80.3332)
      Freeney, S., Borman, S. T. P., Harteveld, J. W. & Swart, I. Coupling quantum corrals to form artificial molecules. SciPost Phys. 9, 085 (2020). (PMID: 10.21468/SciPostPhys.9.6.085)
      Eiguren, A. et al. Role of bulk and surface phonons in the decay of metal surface states. Phys. Rev. Lett. 88, 066805 (2002). (PMID: 1186384010.1103/PhysRevLett.88.066805)
      Heers, S., Mavropoulos, P., Lounis, S., Zeller, R. & Blügel, S. Lifetime reduction of surface states at Cu, Ag, and Au(111) caused by impurity scattering. Phys. Rev. B 86, 125444 (2012). (PMID: 10.1103/PhysRevB.86.125444)
      De Franceschi, S., Kouwenhoven, L., Schönenberger, C. & Wernsdorfer, W. Hybrid superconductor–quantum dot devices. Nat. Nanotechnol. 5, 703–711 (2010). (PMID: 2085263910.1038/nnano.2010.173)
      Freeney, S. E., Slot, M. R., Gardenier, T. S., Swart, I. & Vanmaekelbergh, D. Electronic quantum materials simulated with artificial model lattices. ACS Nanosci. Au 2, 198–224 (2022). (PMID: 35726276920482810.1021/acsnanoscienceau.1c00054)
      Khajetoorians, A. A., Wegner, D., Otte, A. F. & Swart, I. Creating designer quantum states of matter atom-by-atom. Nat. Rev. Phys. 1, 703–715 (2019). (PMID: 10.1038/s42254-019-0108-5)
      Jolie, W. et al. Creating tunable quantum corrals on a Rashba surface alloy. ACS Nano 16, 4876–4883 (2022). (PMID: 35271251894534410.1021/acsnano.2c00467)
      Stalzer, H., Cosceev, A., Sürgers, C. & Löhneysen, H. V. Field-screening properties of proximity-coupled Nb/Ag double layers. Europhys. Lett. 76, 121–127 (2006). (PMID: 10.1209/epl/i2006-10233-3)
      Kevan, S. D. & Gaylord, R. H. High-resolution photoemission study of the electronic structure of the noble-metal (111) surfaces. Phys. Rev. B 36, 5809–5818 (1987). (PMID: 10.1103/PhysRevB.36.5809)
      Crampin, S., Jensen, H., Kröger, J., Limot, L. & Berndt, R. Resonator design for use in scanning tunneling spectroscopy studies of surface electron lifetimes. Phys. Rev. B 72, 035443 (2005). (PMID: 10.1103/PhysRevB.72.035443)
      Balatsky, A. V., Vekhter, I. & Zhu, J. X. Impurity-induced states in conventional and unconventional superconductors. Rev. Mod. Phys. 78, 373–433 (2006). (PMID: 10.1103/RevModPhys.78.373)
      Heinrich, B. W., Pascual, J. I. & Franke, K. J. Single magnetic adsorbates on s-wave superconductors. Prog. Surf. Sci. 93, 1–19 (2018). (PMID: 10.1016/j.progsurf.2018.01.001)
      Pan, S. H. et al. Imaging the effects of individual zinc impurity atoms on superconductivity in Bi 2 Sr 2 CaCu 2 O 8+δ . Nature 403, 746–750 (2000). (PMID: 1069379810.1038/35001534)
      Yazdani, A., Howald, C. M., Lutz, C. P., Kapitulnik, A. & Eigler, D. M. Impurity-induced bound excitations on the surface of Bi 2 Sr 2 CaCu 2 O 8 . Phys. Rev. Lett. 83, 176–179 (1999). (PMID: 10.1103/PhysRevLett.83.176)
      Fujita, K. et al. Bogoliubov angle and visualization of particle-hole mixture in superconductors. Phys. Rev. B 78, 054510 (2008). (PMID: 10.1103/PhysRevB.78.054510)
      Ronen, Y. et al. Charge of a quasiparticle in a superconductor. Proc. Natl Acad. Sci. 113, 1743–1748 (2016). (PMID: 26831071476378010.1073/pnas.1515173113)
      Massee, F., Dong, Q., Cavanna, A., Jin, Y. & Aprili, M. Atomic scale shot-noise using cryogenic MHz circuitry. Rev. Sci. Instrum. 89, 093708 (2018). (PMID: 3027873410.1063/1.5043261)
      Lüpke, F. et al. Proximity-induced superconducting gap in the quantum spin Hall edge state of monolayer WTe 2 . Nat. Phys. 16, 526–530 (2020). (PMID: 10.1038/s41567-020-0816-x)
      Gomes, K. K., Mar, W., Ko, W., Guinea, F. & Manoharan, H. C. Designer Dirac fermions and topological phases in molecular graphene. Nature 483, 306–310 (2012). (PMID: 2242226410.1038/nature10941)
      Gardenier, T. S. et al. p orbital flat band and Dirac cone in the electronic honeycomb lattice. ACS Nano 14, 13638–13644 (2020). (PMID: 32991147759678010.1021/acsnano.0c05747)
      Slot, M. R. et al. Experimental realization and characterization of an electronic Lieb lattice. Nat. Phys. 13, 672–676 (2017). (PMID: 28706560550312710.1038/nphys4105)
      Drost, R., Ojanen, T., Harju, A. & Liljeroth, P. Topological states in engineered atomic lattices. Nat. Phys. 13, 668–671 (2017). (PMID: 10.1038/nphys4080)
      Kempkes, S. N. et al. Robust zero-energy modes in an electronic higher-order topological insulator. Nat. Mater. 18, 1292–1297 (2019). (PMID: 3154863010.1038/s41563-019-0483-4)
      Kempkes, S. N. et al. Design and characterization of electrons in a fractal geometry. Nat. Phys. 15, 127–131 (2019). (PMID: 3088664110.1038/s41567-018-0328-0)
      Freeney, S. E., van den Broeke, J. J., Harsveld van der Veen, A. J. J., Swart, I. & Morais Smith, C. Edge-dependent topology in Kekulé lattices. Phys. Rev. Lett. 124, 236404 (2020). (PMID: 3260317810.1103/PhysRevLett.124.236404)
      Yoshioka, T. & Ohashi, Y. Numerical renormalization group studies on single impurity Anderson model in superconductivity: a unified treatment of magnetic, nonmagnetic impurities, and resonance scattering. J. Phys. Soc. Jpn 69, 1812–1823 (2000). (PMID: 10.1143/JPSJ.69.1812)
      Löptien, P., Zhou, L., Khajetoorians, A. A., Wiebe, J. & Wiesendanger, R. Superconductivity of lanthanum revisited: enhanced critical temperature in the clean limit. J. Phys. Condens. Matter 26, 425703 (2014). (PMID: 2527296810.1088/0953-8984/26/42/425703)
      Pan, S. H., Hudson, E. W. & Davis, J. C. Vacuum tunneling of superconducting quasiparticles from atomically sharp scanning tunneling microscope tips. Appl. Phys. Lett. 73, 2992–2994 (1998). (PMID: 10.1063/1.122654)
      Odobesko, A. B. et al. Preparation and electronic properties of clean superconducting Nb(110) surfaces. Phys. Rev. B 99, 115437 (2019). (PMID: 10.1103/PhysRevB.99.115437)
      Surgers, C., Schock, M. & Lohneysen, H. V. Oxidation-induced surface structure of Nb(110). Surf. Sci. 471, 209–218 (2001). (PMID: 10.1016/S0039-6028(00)00908-0)
      Kralj, M. et al. Tetragonal silver films on V(100): experimental and ab initio studies. Phys. Rev. B 68, 195402 (2003). (PMID: 10.1103/PhysRevB.68.195402)
      Ruckman, M. W. & Jiang, L. Growth and thermal stability of Ag or Au films on Nb(110). Phys. Rev. B 38, 2959–2966 (1988). (PMID: 10.1103/PhysRevB.38.2959)
      Tomanic, T. et al. Local-strain mapping on Ag(111) islands on Nb(110). Appl. Phys. Lett. 101, 063111 (2012). (PMID: 10.1063/1.4745011)
      Crommie, M. F., Lutz, C. P. & Eigler, M. Imaging standing waves in a two-dimensional electron gas. Nature 363, 524–527 (1993). (PMID: 10.1038/363524a0)
      Grothe, S. et al. Quantifying many-body effects by high-resolution Fourier transform scanning tunneling spectroscopy. Phys. Rev. Lett. 111, 246804 (2013). (PMID: 2448368810.1103/PhysRevLett.111.246804)
      Limot, L., Kröger, J., Berndt, R., Garcia-Lekue, A. & Hofer, W. A. Atom transfer and single-adatom contacts. Phys. Rev. Lett. 94, 126102 (2005). (PMID: 1590394110.1103/PhysRevLett.94.126102)
      Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990). (PMID: 10.1038/344524a0)
      Stroscio, J. A. & Eigler, D. M. Atomic and molecular manipulation with the scanning tunneling microscope. Science 254, 1319–1326 (1991). (PMID: 1777360110.1126/science.254.5036.1319)
      Odashima, M. M., Prado, B. G. & Vernek, E. Pedagogical introduction to equilibrium Green’s functions: condensed-matter examples with numerical implementations. Rev. Bras. Ensino Fis. 39, e1303 (2017).
      Mitchell, J. W. & Goodrich, R. G. Fermi velocities in silver: surface Landau-level resonances. Phys. Rev. B 32, 4969–4976 (1985). (PMID: 10.1103/PhysRevB.32.4969)
      Villas, A. et al. Interplay between Yu-Shiba-Rusinov states and multiple Andreev reflections. Phys. Rev. B 101, 235445 (2020). (PMID: 10.1103/PhysRevB.101.235445)
    • Publication Date:
      Date Created: 20230816 Date Completed: 20230911 Latest Revision: 20230914
    • Publication Date:
      20230915
    • Accession Number:
      PMC10482682
    • Accession Number:
      10.1038/s41586-023-06312-0
    • Accession Number:
      37587348