Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Climbing fiber multi-innervation of mouse Purkinje dendrites with arborization common to human.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Busch SE;Busch SE; Hansel C; Hansel C
- Source:
Science (New York, N.Y.) [Science] 2023 Jul 28; Vol. 381 (6656), pp. 420-427. Date of Electronic Publication: 2023 Jul 27.
- Publication Type:
Journal Article
- Language:
English
- Additional Information
- Source:
Publisher: American Association for the Advancement of Science Country of Publication: United States NLM ID: 0404511 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1095-9203 (Electronic) Linking ISSN: 00368075 NLM ISO Abbreviation: Science Subsets: MEDLINE
- Publication Information:
Publication: : Washington, DC : American Association for the Advancement of Science
Original Publication: New York, N.Y. : [s.n.] 1880-
- Subject Terms:
- Abstract:
Canonically, each Purkinje cell (PC) in the adult cerebellum receives only one climbing fiber (CF) from the inferior olive. Underlying current theories of cerebellar function is the notion that this highly conserved one-to-one relationship renders Purkinje dendrites into a single computational compartment. However, we discovered that multiple primary dendrites are a near-universal morphological feature in humans. Using tract tracing, immunolabeling, and in vitro electrophysiology, we found that in mice ~25% of mature multibranched cells receive more than one CF input. Two-photon calcium imaging in vivo revealed that separate dendrites can exhibit distinct response properties to sensory stimulation, indicating that some multibranched cells integrate functionally independent CF-receptive fields. These findings indicate that PCs are morphologically and functionally more diverse than previously thought.
- References:
Elife. 2020 Sep 28;9:. (PMID: 32985976)
Neuron. 2004 Sep 2;43(5):745-57. (PMID: 15339654)
Neuron. 2018 Sep 5;99(5):999-1015.e6. (PMID: 30122378)
Neuron. 2004 Nov 18;44(4):691-700. (PMID: 15541316)
Neuron. 2003 Jun 5;38(5):785-96. (PMID: 12797962)
Nat Commun. 2015 Mar 09;6:6464. (PMID: 25751648)
J Physiol. 2019 Aug;597(16):4387-4406. (PMID: 31297821)
J Neurosci Res. 2018 Sep;96(9):1476-1489. (PMID: 29319237)
Nature. 2023 Jan;613(7944):543-549. (PMID: 36418404)
J Physiol. 1966 Jan;182(2):268-96. (PMID: 5944665)
Nat Rev Neurosci. 2009 Sep;10(9):670-81. (PMID: 19693030)
Nat Rev Neurosci. 2015 Feb;16(2):79-93. (PMID: 25601779)
Cerebellum. 2018 Dec;17(6):722-734. (PMID: 30009357)
Neuron. 2009 Jul 16;63(1):106-18. (PMID: 19607796)
Nat Commun. 2014 Nov 24;5:5586. (PMID: 25418414)
Nat Neurosci. 2015 Dec;18(12):1798-803. (PMID: 26551541)
J Physiol. 2010 Oct 1;588(Pt 19):3757-83. (PMID: 20724365)
Cortex. 2010 Jul-Aug;46(7):831-44. (PMID: 20152963)
Nat Neurosci. 2023 Jan;26(1):39-52. (PMID: 36424433)
Science. 2023 Jul 28;381(6656):420-427. (PMID: 37499000)
Cell Rep. 2014 Mar 13;6(5):792-798. (PMID: 24582958)
J Neurosci. 2011 Jul 27;31(30):10847-58. (PMID: 21795537)
Neuron. 2019 May 22;102(4):762-769.e4. (PMID: 30928170)
Elife. 2014 Sep 09;3:e03663. (PMID: 25205669)
J Neurosci. 2008 Jan 23;28(4):798-807. (PMID: 18216188)
Acta Neuropathol. 1985;68(2):145-8. (PMID: 4072621)
Elife. 2019 Sep 11;8:. (PMID: 31509108)
J Neurosci. 2017 Feb 22;37(8):1997-2009. (PMID: 28077726)
Brain. 2014 Dec;137(Pt 12):3142-8. (PMID: 25367027)
Ann N Y Acad Sci. 2002 Dec;978:359-90. (PMID: 12582067)
Nature. 2014 Jun 26;510(7506):529-32. (PMID: 24814344)
Neuron. 2000 May;26(2):473-82. (PMID: 10839365)
Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):13221-13226. (PMID: 27799554)
Eur J Neurosci. 2008 Dec;28(12):2393-400. (PMID: 19032589)
Neuron. 2013 May 22;78(4):700-13. (PMID: 23643935)
J Physiol. 2019 May;597(9):2483-2514. (PMID: 30908629)
J Physiol. 1982 Mar;324:113-34. (PMID: 7097592)
Nature. 1998 Dec 24-31;396(6713):757-60. (PMID: 9874373)
J Physiol. 1991 Mar;434:183-213. (PMID: 1673717)
Nat Neurosci. 2000 Dec;3(12):1266-73. (PMID: 11100147)
Nature. 2002 Mar 21;416(6878):330-3. (PMID: 11907580)
J Neurosci. 2004 Apr 21;24(16):3926-32. (PMID: 15102908)
Cell Rep. 2018 Aug 7;24(6):1536-1549. (PMID: 30089264)
Anat Sci Int. 2011 Mar;86(1):10-8. (PMID: 21153457)
J Neurosci. 1995 Apr;15(4):2777-87. (PMID: 7722628)
Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8389-93. (PMID: 12048250)
J Neurosci. 2010 Nov 10;30(45):15330-5. (PMID: 21068337)
Neuron. 1997 Jan;18(1):71-9. (PMID: 9010206)
Biol Psychiatry Glob Open Sci. 2021 Oct 01;2(4):450-459. (PMID: 36324646)
Nat Commun. 2018 Aug 23;9(1):3388. (PMID: 30139936)
Nature. 2011 Dec 25;481(7382):502-5. (PMID: 22198670)
Nat Neurosci. 2016 Sep 27;19(10):1299-310. (PMID: 27669991)
J Neurosci. 2021 Dec 15;41(50):10341-10355. (PMID: 34732520)
Neuron. 2012 Jul 12;75(1):108-20. (PMID: 22794265)
Nat Neurosci. 2019 Jun;22(6):950-962. (PMID: 31036947)
Cell Rep. 2019 Nov 26;29(9):2849-2861.e6. (PMID: 31775050)
- Grant Information:
F31 NS129256 United States NS NINDS NIH HHS; R21 NS124217 United States NS NINDS NIH HHS
- Publication Date:
Date Created: 20230727 Date Completed: 20230808 Latest Revision: 20240327
- Publication Date:
20240327
- Accession Number:
PMC10962609
- Accession Number:
10.1126/science.adi1024
- Accession Number:
37499000
No Comments.