Hardware deployment of deep learning model for classification of breast carcinoma from digital mammogram images.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: United States NLM ID: 7704869 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1741-0444 (Electronic) Linking ISSN: 01400118 NLM ISO Abbreviation: Med Biol Eng Comput Subsets: MEDLINE
    • Publication Information:
      Publication: New York, NY : Springer
      Original Publication: Stevenage, Eng., Peregrinus.
    • Subject Terms:
    • Abstract:
      Cancer is an illness that instils fear in many individuals throughout the world due to its lethal nature. However, in most situations, cancer may be cured if detected early and treated properly. Computer-aided diagnosis is gaining traction because it may be used as an initial screening test for many illnesses, including cancer. Deep learning (DL) is a CAD-based artificial intelligence (AI) powered approach which attempts to mimic the cognitive process of the human brain. Various DL algorithms have been applied for breast cancer diagnosis and have obtained adequate accuracy due to the DL technology's high feature learning capabilities. However, when it comes to real-time application, deep neural networks (NN) have a high computational complexity in terms of power, speed, and resource usage. With this in mind, this work proposes a miniaturised NN to reduce the number of parameters and computational complexity for hardware deployment. The quantised NN is then accelerated using field-programmable gate arrays (FPGAs) to increase detection speed and minimise power consumption while guaranteeing high accuracy, thus providing a new avenue in assisting radiologists in breast cancer diagnosis using digital mammograms. When evaluated on benchmark datasets such as DDSM, MIAS, and INbreast, the suggested method achieves high classification rates. The proposed model achieved an accuracy of 99.38% on the combined dataset.
      (© 2023. International Federation for Medical and Biological Engineering.)
    • References:
      Hassan RO, Mostafa H (2021) Implementation of deep neural networks on FPGA-CPU platform using Xilinx SDSOC. Analog Integr Circuits Signal Process 106:399–408. https://doi.org/10.1007/s10470-020-01638-5. (PMID: 10.1007/s10470-020-01638-5)
      Sze V, Chen YH, Emer J et al (2018) (2018) Hardware for machine learning: challenges and opportunities. IEEE Cust Integr Circuits Conf CICC 2018:1–8. https://doi.org/10.1109/CICC.2018.8357072. (PMID: 10.1109/CICC.2018.8357072)
      Sze V, Chen YH, Yang TJ, Emer JS (2017) Efficient processing of deep neural networks: a tutorial and survey. Proc IEEE 105:2295–2329. https://doi.org/10.1109/JPROC.2017.2761740. (PMID: 10.1109/JPROC.2017.2761740)
      Chen YH, Krishna T, Emer JS, Sze V (2017) Eyeriss: an energy-efficient reconfigurable accelerator for deep convolutional neural networks. IEEE J Solid-State Circuits 52:127–138. https://doi.org/10.1109/JSSC.2016.2616357. (PMID: 10.1109/JSSC.2016.2616357)
      Hassan SA, Sayed MS, Abdalla MI, Rashwan MA (2020) Breast cancer masses classification using deep convolutional neural networks and transfer learning. Multimed Tools Appl 79:30735–30768. https://doi.org/10.1007/s11042-020-09518-w. (PMID: 10.1007/s11042-020-09518-w)
      Singh L, Alam A (2022) An efficient hybrid methodology for an early detection of breast cancer in digital mammograms. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-022-03895-w.
      Mughal B, Muhammad N, Sharif M (2019) Adaptive hysteresis thresholding segmentation technique for localizing the breast masses in the curve stitching domain. Int J Med Inform 126:26–34. https://doi.org/10.1016/j.ijmedinf.2019.02.001. (PMID: 10.1016/j.ijmedinf.2019.02.00131029261)
      Ding S, Zhao H, Zhang Y et al (2015) Extreme learning machine: algorithm, theory and applications. Artif Intell Rev 44:103–115. https://doi.org/10.1007/s10462-013-9405-z. (PMID: 10.1007/s10462-013-9405-z)
      Shah SM, Khan RA, Arif S, Sajid U (2022) Artificial intelligence for breast cancer analysis: trends & directions. Comput Biol Med 142:105221. https://doi.org/10.1016/j.compbiomed.2022.105221. (PMID: 10.1016/j.compbiomed.2022.10522135016100)
      Weiss K, Khoshgoftaar TM, Wang D (2016) A survey of transfer learning. J Big Data 3:9. https://doi.org/10.1186/s40537-016-0043-6. (PMID: 10.1186/s40537-016-0043-6)
      Hassan NM, Hamad S, Mahar K (2022) Mammogram breast cancer CAD systems for mass detection and classification: a review. Multimed Tools Appl 81:20043–20075. https://doi.org/10.1007/s11042-022-12332-1. (PMID: 10.1007/s11042-022-12332-1)
      Dhungel N, Carneiro G, Bradley AP (2017) A deep learning approach for the analysis of masses in mammograms with minimal user intervention. Med Image Anal 37:114–128. https://doi.org/10.1016/j.media.2017.01.009. (PMID: 10.1016/j.media.2017.01.00928171807)
      Shen R, Yao J, Yan K et al (2020) Unsupervised domain adaptation with adversarial learning for mass detection in mammogram. Neurocomputing 393:27–37. https://doi.org/10.1016/j.neucom.2020.01.099. (PMID: 10.1016/j.neucom.2020.01.099)
      Ribli D, Horváth A, Unger Z et al (2018) Detecting and classifying lesions in mammograms with deep learning. Sci Rep 8:1–7. https://doi.org/10.1038/s41598-018-22437-z. (PMID: 10.1038/s41598-018-22437-z)
      Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39:1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031. (PMID: 10.1109/TPAMI.2016.257703127295650)
      Shawahna A, Sait SM, El-Maleh A (2019) FPGA-based accelerators of deep learning networks for learning and classification: a review. IEEE Access 7:7823–7859. https://doi.org/10.1109/ACCESS.2018.2890150. (PMID: 10.1109/ACCESS.2018.2890150)
      Liu B, Zou D, Feng L, et al (2019) An FPGA-based CNN accelerator integrating depthwise separable convolution. Electron 8. https://doi.org/10.3390/electronics8030281.
      Liu Z, Chow P, Xu J, et al (2019) A uniform architecture design for accelerating 2d and 3d cnns on fpgas. Electron 8. https://doi.org/10.3390/electronics8010065.
      Suckling J, Parker J, Dance D, Astley S, Hutt I, Boggis C, Ricketts I et al (2015) Mammographic Image Analysis Society (MIAS) database v1.21.  https://www.repository.cam.ac.uk/handle/1810/250394 . Accessed Mar 2022.
      Moreira IC, Amaral I, Domingues I et al (2012) INbreast: toward a full-field digital mammographic database. Acad Radiol 19:236–248. https://doi.org/10.1016/j.acra.2011.09.014. (PMID: 10.1016/j.acra.2011.09.01422078258)
      Joseph AM, John MG, Dhas AS (2017) Mammogram image denoising filters: a comparative study. 2017 Conference on Emerging Devices and Smart Systems (ICEDSS), Mallasamudram, India, pp 184–1891. https://doi.org/10.1109/ICEDSS.2017.8073679. (PMID: 10.1109/ICEDSS.2017.8073679)
      Ramachandran V, Kishorebabu V (2019) A tri-state filter for the removal of salt and pepper noise in mammogram images. J Med Syst 43. https://doi.org/10.1007/s10916-018-1133-0.
      Maria HH, Jossy AM, Malarvizhi G, Jenitta A (2021) Analysis of lifting scheme based double density dual-tree complex wavelet transform for de-noising medical images. Optik 241:2–3. https://doi.org/10.1016/j.ijleo.2021.166883. (PMID: 10.1016/j.ijleo.2021.166883)
      Jang S, Liu W, Cho Y (2022) Convolutional neural network model compression method for software—hardware co-design. Information 13(10):451. https://doi.org/10.3390/info13100451. (PMID: 10.3390/info13100451)
      https://www.tensil.ai/ . Accessed Mar 2022.
      Hu X, Wen S, Lam HK (2022) Dynamic random distribution learning rate for neural networks training. Appl Soft Comput 124:109058. https://doi.org/10.1016/j.asoc.2022.109058. (PMID: 10.1016/j.asoc.2022.109058)
      Wang SH, Lv YD, Sui Y, et al (2018) Alcoholism detection by data augmentation and convolutional neural network with stochastic pooling. J Med Syst 42. https://doi.org/10.1007/s10916-017-0845-x.
      Rahangdale A, Raut S (2019) Deep neural network regularization for feature selection in learning-to-rank. IEEE Access 7:53988–54006. https://doi.org/10.1109/ACCESS.2019.2902640. (PMID: 10.1109/ACCESS.2019.2902640)
      Ting FF, Tan YJ, Sim KS (2019) Convolutional neural network improvement for breast cancer classification. Expert Syst Appl 120:103–115. https://doi.org/10.1016/j.eswa.2018.11.008. (PMID: 10.1016/j.eswa.2018.11.008)
      Jiao Z, Gao X, Wang Y, Li J (2016) A deep feature based framework for breast masses classification. Neurocomputing 197:221–231. https://doi.org/10.1016/j.neucom.2016.02.060. (PMID: 10.1016/j.neucom.2016.02.060)
      Al-antari MA, Al-masni MA, Choi MT et al (2018) A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification. Int J Med Inform 117:44–54. https://doi.org/10.1016/j.ijmedinf.2018.06.003. (PMID: 10.1016/j.ijmedinf.2018.06.00330032964)
      Salama WM, Aly MH (2021) Deep learning in mammography images segmentation and classification: automated CNN approach. Alexandria Eng J 60:4701–4709. https://doi.org/10.1016/j.aej.2021.03.048. (PMID: 10.1016/j.aej.2021.03.048)
      Ragab DA, Sharkas M, Marshall S, Ren J (2019) Breast cancer detection using deep convolutional neural networks and support vector machines. PeerJ 2019:1–23. https://doi.org/10.7717/peerj.6201. (PMID: 10.7717/peerj.6201)
    • Contributed Indexing:
      Keywords: Artificial intelligence; Breast cancer; CNN; Computer-aided diagnosis (CAD); Deep learning; FPGA
    • Publication Date:
      Date Created: 20230726 Date Completed: 20231023 Latest Revision: 20231214
    • Publication Date:
      20231215
    • Accession Number:
      10.1007/s11517-023-02883-2
    • Accession Number:
      37495885