Research progress on the nucleoside/nucleotide-loaded nanomedicines.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Zhou Z;Zhou Z;Zhou Z; Liu H; Liu H; Ye M; Ye M; Ye M
  • Source:
    Zhejiang da xue xue bao. Yi xue ban = Journal of Zhejiang University. Medical sciences [Zhejiang Da Xue Xue Bao Yi Xue Ban] 2023 Jun 25; Vol. 52 (3), pp. 279-284.
  • Publication Type:
    Review; Journal Article
  • Language:
    English; Chinese
  • Additional Information
    • Transliterated Title:
      核苷类药物纳米递送系统研究进展.
    • Source:
      Publisher: Zhejiang da xue xue bao bian ji bu Country of Publication: China NLM ID: 100927946 Publication Model: Print Cited Medium: Print ISSN: 1008-9292 (Print) Linking ISSN: 10089292 NLM ISO Abbreviation: Zhejiang Da Xue Xue Bao Yi Xue Ban Subsets: MEDLINE
    • Publication Information:
      Original Publication: Hangzhou : Zhejiang da xue xue bao bian ji bu, [1999]-
    • Subject Terms:
    • Abstract:
      Nucleoside drugs play an essential role in treating major diseases such as tumor and viral infections, and have been widely applied in clinics. However, the effectiveness and application of nucleoside drugs are significantly limited by their intrinsic properties such as low bioavailability, lack of targeting ability, and inability to enter the cells. Nanocarriers can improve the physiological properties of nucleoside drugs by improving drug delivery efficiency and availability, maintaining drug efficacy and system stability, adjusting the binding ability of the carrier and drug molecules, as well as modifying specific molecules to achieve active targeting. Starting from the design strategy of nucleoside drug nanodelivery systems, the design and therapeutic effect of these nanomedicines are described in this review, and the future development directions of nucleoside/nucleotide-loaded nanomedicines are also discussed.
    • References:
      TCHESNOKOV E P, FENG J Y, PORTER D P, et al. Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir[J]. Viruses, 2019, 11(4): 326. /mixed-citation>. (PMID: 10.3390/v11040326)
      ABDELNABI R, FOO C S, DE JONGHE S, et al. Molnupiravir inhibits replication of the emerging SARS-CoV-2 variants of concern in a hamster infection model[J]. J Infect Dis, 2021, 224(5): 749- 753. /mixed-citation>. (PMID: 10.1093/infdis/jiab361)
      YE W, HUANG Q, TANG T, et al. Synergistic effects of piperlongumine and gemcitabine against KRAS mutant lung cancer[J]. Tumori, 2021, 107(2): 119- 124. /mixed-citation>. (PMID: 10.1177/0300891620930789)
      ZHANG X, LI C, WEN T, et al. The different effects of nucleotide and nucleoside analogues on the prognosis of HBV-related HCC after curative resection[J]. J Gastrointest Surg, 2021, 25(6): 1419- 1429. /mixed-citation>. (PMID: 10.1007/s11605-020-04633-3)
      WU H L, GONG Y, JI P, et al. Targeting nucleotide metabolism: a promising approach to enhance cancer immunotherapy[J]. J Hematol Oncol, 2022, 15(1): 45. /mixed-citation>. (PMID: 10.1186/s13045-022-01263-x)
      SHI J, KANTOFF P W, WOOSTER R, et al. Cancer nanomedicine: progress, challenges and opportunities[J]. Nat Rev Cancer, 2017, 17(1): 20- 37. /mixed-citation>. (PMID: 10.1038/nrc.2016.108)
      WEI W, ZHANG Y, LIN Z, et al. Advances, challenge and prospects in cell-mediated nanodrug delivery for cancer therapy: a review[J]. J Drug Target, 2023, 31(1): 1- 13. /mixed-citation>. (PMID: 10.1080/1061186x.2022.2104299)
      KUMBHAM S, GHOSH A, GHOSH B, et al. Human serum albumin-poly (lactide)-conjugated self-assembly NPs for targeted docetaxel delivery and improved therapeutic efficacy in oral cancer[J]. Int J Biol Macromol, 2022, 222(Pt A): 1287- 1303. /mixed-citation>. (PMID: 10.1016/j.ijbiomac.2022.09.250)
      SADEGHA S, VARSHOCHIAN R, DADRAS P, et al. Mesoporous silica coated SPIONs containing curcumin and silymarin intended for breast cancer therapy[J]. Daru, 2022, 30(2): 331- 341. /mixed-citation>. (PMID: 10.1007/s40199-022-00453-9)
      RANA I, OH J, BAIG J, et al. Nanocarriers for cancer nano-immunotherapy[J]. Drug Deliv Transl Res, 2022: 1- 19. /mixed-citation>. (PMID: 10.1007/s13346-022-01241-3)
      LU Z D, CHEN Y F, SHEN S, et al. Co-delivery of phagocytosis checkpoint silencer and stimulator of interferon genes agonist for synergetic cancer immuno-therapy[J]. ACS Appl Mater Interfaces, 2021, 13(25): 29424- 29438. /mixed-citation>. (PMID: 10.1021/acsami.1c08329)
      LORKOWSKI M E, ATUKORALE P U, BIELECKI P A, et al. Immunostimulatory nanoparticle incorporating two immune agonists for the treatment of pancreatic tumors[J]. J Control Release, 2021, 330: 1095- 1105. /mixed-citation>. (PMID: 10.1016/j.jconrel.2020.11.014)
      YE M, ZHAO Y, WANG Y, et al. NAD(H)-loaded nanoparticles for efficient sepsis therapy via modulating immune and vascular homeostasis[J]. Nat Nanotechnol, 2022, 17(8): 880- 890. /mixed-citation>. (PMID: 10.1038/s41565-022-01137-w)
      DERAKHSHANDEH K, FATHI S. Role of chitosan nanoparticles in the oral absorption of Gemcitabine[J]. Int J Pharm, 2012, 437(1-2): 172- 177. /mixed-citation>. (PMID: 10.1016/j.ijpharm.2012.08.008)
      MISHRA D, JAIN N, RAJORIYA V, et al. Glycyrrhizin conjugated chitosan nanoparticles for hepatocyte-targeted delivery of lamivudine[J]. J Pharm Pharmacol, 2014, 66(8): 1082- 1093. /mixed-citation>. (PMID: 10.1111/jphp.12235)
      SINGH R, MEHRA N K, JAIN V, et al. Gemcitabine-loaded smart carbon nanotubes for effective targeting to cancer cells[J]. J Drug Target, 2013, 21(6): 581- 592. /mixed-citation>. (PMID: 10.3109/1061186x.2013.778264)
      DONALISIO M, LEONE F, CIVRA A, et al. Acyclovir-loaded chitosan nanospheres from nano-emulsion templating for the topical treatment of herpesviruses infections[J]. Pharmaceutics, 2018, 10(2): 46. /mixed-citation>. (PMID: 10.3390/pharmaceutics10020046)
      JIN Y, REN X, WANG W, et al. A 5-fluorouracil-loaded pH-responsive dendrimer nanocarrier for tumor targeting[J]. Int J Pharm, 2011, 420(2): 378- 384. /mixed-citation>. (PMID: 10.1016/j.ijpharm.2011.08.053)
      CHEN G, SVIRSKIS D, LU W, et al. N -trimethyl chitosan coated nano-complexes enhance the oral bioavailability and chemotherapeutic effects of gemci-tabine[J]. Carbohydr Polym, 2021, 273: 118592. /mixed-citation>. (PMID: 10.1016/j.carbpol.2021.118592)
      NAZ A, CUI Y, COLLINS C J, et al. PLGA-PEG nano-delivery system for epigenetic therapy[J]. Biomed Phar-macother, 2017, 90: 586- 597. /mixed-citation>. (PMID: 10.1016/j.biopha.2017.03.093)
      LEMBO D, SWAMINATHAN S, DONALISIO M, et al. Encapsulation of Acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent’s antiviral efficacy[J]. Int J Pharm, 2013, 443(1-2): 262- 272. /mixed-citation>. (PMID: 10.1016/j.ijpharm.2012.12.031)
      GUPTA S, AGARWAL A, GUPTA N K, et al. Galactose decorated PLGA nanoparticles for hepatic delivery of acyclovir[J]. Drug Dev Ind Pharm, 2013, 39(12): 1866- 1873. /mixed-citation>. (PMID: 10.3109/03639045.2012.662510)
      HAMSICI S, SARDAN EKIZ M, CINAR CIFTCI G, et al. Gemcitabine integrated nano-prodrug carrier system[J]. Bioconjug Chem, 2017, 28(5): 1491- 1498. /mixed-citation>. (PMID: 10.1021/acs.bioconjchem.7b00155)
      HARILALL S L, CHOONARA Y E, MODI G, et al. Design and pharmaceutical evaluation of a nano-enabled crosslinked multipolymeric scaffold for prolonged intra-cranial release of Zidovudine[J]. J Pharm Pharm Sci, 2013, 16(3): 470- 485. /mixed-citation>. (PMID: 10.18433/j3r88k)
      PATTNAIK G, SINHA B, MUKHERJEE B, et al. Submicron-size biodegradable polymer-based didanosine particles for treating HIV at early stage: an in vitro study[J]. J Microencapsul, 2012, 29(7): 666- 676. /mixed-citation>. (PMID: 10.3109/02652048.2012.680509)
      REN J, ZOU M, GAO P, et al. Tissue distribution of borneol-modified ganciclovir-loaded solid lipid nano-particles in mice after intravenous administration[J]. Eur J Pharm Biopharm, 2013, 83(2): 141- 148. /mixed-citation>. (PMID: 10.1016/j.ejpb.2012.10.018)
      SWENNEN E L, BAST A, DAGNELIE P C. Immu-noregulatory effects of adenosine 5'-triphosphate on cytokine release from stimulated whole blood[J]. Eur J Immunol, 2005, 35(3): 852- 858. /mixed-citation>. (PMID: 10.1002/eji.200425423)
      BOURS M J, SWENNEN E L, DI VIRGILIO F, et al. Adenosine 5'-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation[J]. Pharmacol Ther, 2006, 112(2): 358- 404. /mixed-citation>. (PMID: 10.1016/j.pharmthera.2005.04.013)
      GRUENHAGEN J A, LAI C Y, RADU D R, et al. Real-time imaging of tunable adenosine 5-triphosphate release from an MCM-41-type mesoporous silica nanosphere-based delivery system[J]. Appl Spectrosc, 2005, 59(4): 424- 431. /mixed-citation>. (PMID: 10.1366/0003702053641513)
      VIOLLET B, GUIGAS B, SANZ GARCIA N, et al. Cellular and molecular mechanisms of metformin: an overview[J]. Clin Sci (Lond), 2012, 122(6): 253- 270. /mixed-citation>. (PMID: 10.1042/cs20110386)
      SULTANI G, SAMSUDEEN A F, OSBORNE B, et al. NAD + : a key metabolic regulator with great therapeutic potential[J/OL]. J Neuroendocrinol, 2017, 29(10): e12508. /mixed-citation>. (PMID: 10.1111/jne.12508)
      KIM E M, OH P S, JEONG H J, et al. α v β 3 mediated tumor imaging using 99m Tc labeled NAD/monosaccharide coated ferrihydrite nanoparticles[J]. J Labelled Comp Radiopharm, 2018, 61(1): 18- 29. /mixed-citation>. (PMID: 10.1002/jlcr.3565)
      CAI H, WANG R, GUO X, et al. Combining gemcitabine-loaded macrophage-like nanoparticles and erlotinib for pancreatic cancer therapy[J]. Mol Pharm, 2021, 18(7): 2495- 2506. /mixed-citation>. (PMID: 10.1021/acs.molpharmaceut.0c01225)
      PANG J, FENG X, LIANG Q, et al. Ferritin-nanocaged ATP traverses the blood-testis barrier and enhances sperm motility in an asthenozoospermia model[J]. ACS Nano, 2022, 16(3): 4175- 4185. /mixed-citation>. (PMID: 10.1021/acsnano.1c10029)
      SAIYED Z M, GANDHI N H, NAIR M P. AZT 5'-triphosphate nanoformulation suppresses human immunodeficiency virus type 1 replication in peripheral blood mononuclear cells[J]. J Neurovirol, 2009, 15(4): 343- 347. /mixed-citation>. (PMID: 10.1080/13550280903062813)
      LI X, KHORSANDI S, WANG Y, et al. Cancer immunotherapy based on image-guided STING activation by nucleotide nanocomplex-decorated ultrasound micro-bubbles[J]. Nat Nanotechnol, 2022, 17(8): 891- 899. /mixed-citation>. (PMID: 10.1038/s41565-022-01134-z)
    • Contributed Indexing:
      Keywords: Antineoplastics; Antiviral drugs; Nanodrug delivery system; Nucleoside analogue; Nucleoside drugs; Nucleotide; Review
      Local Abstract: [Publisher, Chinese] 核苷类药物在肿瘤和病毒等疾病的临床治疗中占据重要地位,但这类药物生物利用度低,缺乏靶向性,入胞效率较低,极大地制约了临床应用。设计并利用纳米载体,通过提升载药效率与药物利用度、维持药效与系统稳定性、调整载体与药物分子的结合能力、修饰特异性分子实现主动靶向等方式,能够改善核苷类药物的生理学性质。本文从核苷类药物纳米递送系统设计策略出发,综述了针对核苷类药物的纳米递送系统载体设计及包载效果。.
    • Accession Number:
      0 (Nucleosides)
      0 (Nucleotides)
      0 (Drug Carriers)
    • Publication Date:
      Date Created: 20230721 Date Completed: 20230811 Latest Revision: 20231128
    • Publication Date:
      20240829
    • Accession Number:
      PMC10409901
    • Accession Number:
      10.3724/zdxbyxb-2022-0701
    • Accession Number:
      37476939