Knowledge graph aids comprehensive explanation of drug and chemical toxicity.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Hao Y;Hao Y; Romano JD; Romano JD; Romano JD; Moore JH; Moore JH
  • Source:
    CPT: pharmacometrics & systems pharmacology [CPT Pharmacometrics Syst Pharmacol] 2023 Aug; Vol. 12 (8), pp. 1072-1079. Date of Electronic Publication: 2023 Jul 20.
  • Publication Type:
    Journal Article; Research Support, N.I.H., Extramural
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Wiley Country of Publication: United States NLM ID: 101580011 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2163-8306 (Electronic) Linking ISSN: 21638306 NLM ISO Abbreviation: CPT Pharmacometrics Syst Pharmacol Subsets: MEDLINE
    • Publication Information:
      Publication: 2015- : Hoboken, NJ : Wiley
      Original Publication: New York, NY : Nature Pub. Group
    • Subject Terms:
    • Abstract:
      In computational toxicology, prediction of complex endpoints has always been challenging, as they often involve multiple distinct mechanisms. State-of-the-art models are either limited by low accuracy, or lack of interpretability due to their black-box nature. Here, we introduce AIDTox, an interpretable deep learning model which incorporates curated knowledge of chemical-gene connections, gene-pathway annotations, and pathway hierarchy. AIDTox accurately predicts cytotoxicity outcomes in HepG2 and HEK293 cells. It also provides comprehensive explanations of cytotoxicity covering multiple aspects of drug activity, including target interaction, metabolism, and elimination. In summary, AIDTox provides a computational framework for unveiling cellular mechanisms for complex toxicity endpoints.
      (© 2023 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.)
    • References:
      Environ Health Perspect. 2011 Mar;119(3):364-70. (PMID: 20980217)
      Chem Res Toxicol. 2015 Apr 20;28(4):738-51. (PMID: 25697799)
      Front Physiol. 2019 Aug 13;10:1044. (PMID: 31456700)
      Patterns (N Y). 2022 Aug 24;3(9):100565. (PMID: 36124309)
      J Chem Inf Model. 2017 Nov 27;57(11):2618-2639. (PMID: 28949520)
      Cells. 2021 Feb 23;10(2):. (PMID: 33672268)
      J Med Chem. 2014 Jun 26;57(12):4977-5010. (PMID: 24351051)
      Wiley Interdiscip Rev Comput Mol Sci. 2020 Jul-Aug;10(4):e1475. (PMID: 35866138)
      J Chem Inf Model. 2014 Aug 25;54(8):2347-59. (PMID: 25046554)
      Chem Res Toxicol. 2022 Aug 15;35(8):1370-1382. (PMID: 35819939)
      Clin Pharmacol Ther. 2014 Mar;95(3):294-306. (PMID: 24107928)
      Nat Biotechnol. 2014 Jun;32(6):583-91. (PMID: 24837663)
      Nature. 2021 Oct;598(7880):348-352. (PMID: 34552244)
      Bioinformatics. 2021 Sep 9;37(17):2675-2681. (PMID: 34042953)
      J Biomed Inform. 2018 Sep;85:168-188. (PMID: 30030120)
      Methods. 2015 Jan;71:58-63. (PMID: 25132639)
      Chem Res Toxicol. 2021 Feb 15;34(2):189-216. (PMID: 33140634)
      Nucleic Acids Res. 2016 Jul 8;44(12):5515-28. (PMID: 27207879)
      Nucleic Acids Res. 2020 Jan 8;48(D1):D498-D503. (PMID: 31691815)
      Pac Symp Biocomput. 2022;27:187-198. (PMID: 34890148)
      Nat Methods. 2018 Apr;15(4):290-298. (PMID: 29505029)
      Molecules. 2020 Jun 15;25(12):. (PMID: 32549344)
      J Chem Inf Model. 2019 Oct 28;59(10):4150-4158. (PMID: 31560206)
      CPT Pharmacometrics Syst Pharmacol. 2023 Aug;12(8):1072-1079. (PMID: 37475158)
      Curr Opin Toxicol. 2018 Feb;7:44-51. (PMID: 29527583)
    • Grant Information:
      P30 ES013508 United States ES NIEHS NIH HHS; R01 AG066833 United States AG NIA NIH HHS; K99 LM013646 United States LM NLM NIH HHS; R01 LM010098 United States LM NLM NIH HHS
    • Publication Date:
      Date Created: 20230721 Date Completed: 20230817 Latest Revision: 20231111
    • Publication Date:
      20231215
    • Accession Number:
      PMC10431039
    • Accession Number:
      10.1002/psp4.12975
    • Accession Number:
      37475158