Monoacylglycerol Lipase Inhibition Prevents Short-Term Mitochondrial Dysfunction and Oxidative Damage in Rat Brain Synaptosomal/Mitochondrial Fractions and Cortical Slices: Role of Cannabinoid Receptors.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: United States NLM ID: 100929017 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-3524 (Electronic) Linking ISSN: 10298428 NLM ISO Abbreviation: Neurotox Res Subsets: MEDLINE
    • Publication Information:
      Publication: <2009-> : New York : Springer
      Original Publication: [Amsterdam?] : Harwood Academic Publishers,
    • Subject Terms:
    • Abstract:
      Inhibition of enzymes responsible for endocannabinoid hydrolysis represents an invaluable emerging tool for the potential treatment of neurodegenerative disorders. Monoacylglycerol lipase (MAGL) is the enzyme responsible for degrading 2-arachydonoylglycerol (2-AG), the most abundant endocannabinoid in the central nervous system (CNS). Here, we tested the effects of the selective MAGL inhibitor JZL184 on the 3-nitropropinic acid (3-NP)-induced short-term loss of mitochondrial reductive capacity/viability and oxidative damage in rat brain synaptosomal/mitochondrial fractions and cortical slices. In synaptosomes, while 3-NP decreased mitochondrial function and increased lipid peroxidation, JZL184 attenuated both markers. The protective effects evoked by JZL184 on the 3-NP-induced mitochondrial dysfunction were primarily mediated by activation of cannabinoid receptor 2 (CB2R), as evidenced by their inhibition by the selective CB2R inverse agonist JTE907. The cannabinoid receptor 1 (CB1R) also participated in this effect in a lesser extent, as evidenced by the CB1R antagonist/inverse agonist AM281. In contrast, activation of CB1R, but not CB2R, was responsible for the protective effects of JZL184 on the 3-NP-iduced lipid peroxidation. Protective effects of JZL184 were confirmed in other toxic models involving excitotoxicity and oxidative damage as internal controls. In cortical slices, JZL184 ameliorated the 3-NP-induced loss of mitochondrial function, the increase in lipid peroxidation, and the inhibition of succinate dehydrogenase (mitochondrial complex II) activity, and these effects were independent on CB1R and CB2R, as evidenced by the lack of effects of AM281 and JTE907, respectively. Our novel results provide experimental evidence that the differential protective effects exerted by JZL184 on the early toxic effects induced by 3-NP in brain synaptosomes and cortical slices involve MAGL inhibition, and possibly the subsequent accumulation of 2-AG. These effects involve pro-energetic and redox modulatory mechanisms that may be either dependent or independent of cannabinoid receptors' activation.
      (© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Aguilera-Portillo G, Rangel-López E, Villeda-Hernández J, Chavarría A, Castellanos P, Elmazoglu Z, Karasu Ç, Túnez I, Pedraza G, Königsberg M, Santamaría A (2019) The pharmacological inhibition of fatty acid amide hydrolase prevents excitotoxic damage in the rat striatum: possible involvement of CB1 receptors regulation. Mol Neurobiol 56:844–856. https://doi.org/10.1007/s12035-018-1129-2. (PMID: 10.1007/s12035-018-1129-229802570)
      Aymerich MS, Aso E, Abellanas MA, Tolon RM, Ramos JA, Ferrer I, Romero J, Fernández-Ruiz J (2018) Cannabinoid pharmacology/therapeutics in chronic degenerative disorders affecting the central nervous system. Biochem Pharmacol 157:67–84. https://doi.org/10.1016/j.bcp.2018.08.016. (PMID: 10.1016/j.bcp.2018.08.01630121249)
      Aymerich MS, Rojo-Bustamante E, Molina C, Celorrio M, Sánchez-Arias JA, Franco R (2016) Neuroprotective effect of JZL184 in MPP(+)-treated SH-SY5Y cells through CB2 receptors. Mol Neurobiol 53:2312–2319. https://doi.org/10.1007/s12035-015-9213-3. (PMID: 10.1007/s12035-015-9213-325976369)
      Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999. (PMID: 10.1006/abio.1976.9999942051)
      Brouillet E, Jacquard C, Bizat N, Blum D (2005) 3-Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington’s disease. J Neurochem 95:1521–1540. https://doi.org/10.1111/j.1471-4159.2005.03515.x. (PMID: 10.1111/j.1471-4159.2005.03515.x16300642)
      Carloni S, Alonso-Alconada D, Girelli S, Duranti A, Tontini A, Piomelli D, Hilario E, Alvarez A, Balduini W (2012) Pretreatment with the monoacylglycerol lipase inhibitor URB602 protects from the long-term consequences of neonatal hypoxic-ischemic brain injury in rats. Pediatr Res 72:400–406. https://doi.org/10.1038/pr.2012.91. (PMID: 10.1038/pr.2012.9122821058)
      Chanda PK, Gao Y, Mark L, Btesh J, Strassle BW, Lu P, Piesla MJ, Zhang M-Y, Bingham B, Uveges A, Kowal D, Garbe D, Kouranova EV, Ring RH, Bates B, Pangalos MN, Kennedy JD, Whiteside GT, Samad TA (2010) Monoacylglycerol lipase activity is a critical modulator of the tone and integrity of the endocannabinoid system. Mol Pharmacol 78(6):996–1003. https://doi.org/10.1124/mol.110.068304. (PMID: 10.1124/mol.110.06830420855465)
      Chaturvedi RK, Beal MF (2013) Mitochondrial disease of the brain. Free Radic Biol Med 63:1–29. https://doi.org/10.1016/j.freeradbiomed.2013.03.018. (PMID: 10.1016/j.freeradbiomed.2013.03.01823567191)
      Chavira-Ramos K, Orozco-Morales M, Karasu C, Tinkov AA, Aschner M, Santamaría A, Colín-González AL (2021) URB597 prevents the short-term excitotoxic cell damage in rat cortical slices: role of cannabinoid 1 receptors. Neurotox Res 39:146–155. https://doi.org/10.1007/s12640-020-00301-1. (PMID: 10.1007/s12640-020-00301-133141426)
      Chen X, Zhang J, Chen C (2011) Endocannabinoid 2-arachidonoylglycerol protects neurons against β-amyloid insults. Neuroscience 178:159–168. https://doi.org/10.1016/j.neuroscience.2011.01.024. (PMID: 10.1016/j.neuroscience.2011.01.02421256197)
      Choi S-H, Arai AL, Mou Y, Kang B, Yen CC-C, Hallenbeck J, Silva AC (2018) Neuroprotective effects of MAGL (monoacylglycerol lipase) inhibitors in experimental ischemic stroke. Stroke 49(3):718–726. https://doi.org/10.1161/STROKEAHA.117.019664. (PMID: 10.1161/STROKEAHA.117.019664294404745829008)
      Colín-González AL, Aguilera G, Santamaría A (2016) Cannabinoids: glutamatergic transmission and kynurenines. Adv Neurobiol 12:173–198. https://doi.org/10.1007/978-3-319-28383-8_10. (PMID: 10.1007/978-3-319-28383-8_1027651254)
      Colín-González AL, Maya-López M, Pedraza-Chaverrí J, Ali SF, Chavarría A, Santamaría A (2014) The Janus faces of 3-hydroxykynurenine: dual redox modulatory activity and lack of neurotoxicity in the rat striatum. Brain Res 1589:1–14. https://doi.org/10.1016/j.brainres.2014.09.034. (PMID: 10.1016/j.brainres.2014.09.03425251594)
      Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB (1996) Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384:83–87. https://doi.org/10.1038/384083a0. (PMID: 10.1038/384083a08900284)
      Cristino L, Bisogno T, Di Marzo V (2020) Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nature Rev Neurology 16(1):9–29. https://doi.org/10.1038/s41582-019-0284-z. (PMID: 10.1038/s41582-019-0284-z)
      Di Marzo V (2018) New approaches and challenges to targeting the endocannabinoid system. Nature Rev Drug Discovery 17(9):623–639. https://doi.org/10.1038/nrd.2018.115. (PMID: 10.1038/nrd.2018.115)
      Dinh TP, Carpenter D, Leslie FM, Freund TF, Katona I, Sensi SL, Kathuria S, Piomelli D (2002) Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci USA 99:10819–10824. https://doi.org/10.1073/pnas.152334899. (PMID: 10.1073/pnas.15233489912136125125056)
      Du H, Chen X, Zhang J, Chen C (2011) Inhibition of COX-2 expression by endocannabinoid 2-arachidonoylglycerol is mediated via PPAR-γ. Br J Pharmacol 163(7):1533–1549. https://doi.org/10.1111/j.1476-5381.2011.01444.x. (PMID: 10.1111/j.1476-5381.2011.01444.x215011473165961)
      Fernández-Suárez D, Celorrio M, Riezu-Boj JI, Ugarte A, Pacheco R, González H, Oyarzabal J, Hillard CJ, Franco R, Aymerich MS (2014) Monoacylglycerol lipase inhibitor JZL184 is neuroprotective and alters glial cell phenotype in the chronic MPTP mouse model. Neurobiol Aging 35:2603–2616. https://doi.org/10.1016/j.neurobiolaging.2014.05.021. (PMID: 10.1016/j.neurobiolaging.2014.05.02124973119)
      Fucich EA, Stielper ZF, Cancienne HL, Edwards S, Gilpin NW, Molina PE, Middleton JW (2020) Endocannabinoid degradation inhibitors ameliorate neuronal and synaptic alterations following traumatic brain injury. 123:707–717. https://doi.org/10.1152/jn.00570.2019.
      García del Caño G, Aretxabala X, González-Burguera I, Montaña M, López de Jesús M, Barrondo S, Barrio RJ, Sampedro C, Goicolea MA, Sallés J (2015) Nuclear diacylglycerol lipase-α in rat brain cortical neurons: evidence of 2-arachidonoylglycerol production in concert with phospholipase C-β activity. J Neurochem 132(5):489–503. https://doi.org/10.1111/jnc.12963. (PMID: 10.1111/jnc.1296325308538)
      García-Morales V, Montero F, Moreno-López B (2015) Cannabinoid agonists rearrange synaptic vesicles at excitatory synapses and depress motoneuron activity in vivo. Neuropharmacology 92:69–79. https://doi.org/10.1016/j.neuropharm.2014.12.036.
      Gil-Ordóñez A, Martín-Fontecha M, Ortega-Gutiérrez S, López-Rodríguez ML (2018) Monoacylglycerol lipase (MAGL) as a promising therapeutic target. Biochem Pharmacol 157:18–32. https://doi.org/10.1016/j.bcp.2018.07.036. (PMID: 10.1016/j.bcp.2018.07.03630059673)
      Grabner GF, Zimmermann R, Schicho R, Taschler U (2017) Monoglyceride lipase as a drug target: at the crossroads of arachidonic acid metabolism and endocannabinoid signaling. Pharmacol Ther 175:35–46. https://doi.org/10.1016/j.pharmthera.2017.02.033. (PMID: 10.1016/j.pharmthera.2017.02.033282130895466884)
      Hariharan A, Shetty S, Shirole T, Jagtap AG (2014) Potential of protease inhibitor in 3-nitropropionic acid induced Huntington’s disease like symptoms: mitochondrial dysfunction and neurodegeneration. Neurotoxicology 45:139–148. https://doi.org/10.1016/j.neuro.2014.10.004. (PMID: 10.1016/j.neuro.2014.10.00425445565)
      Hu SS-J, Bradshaw HB, Chen JS-C, Tan B, Walker JM (2008) Prostaglandin E2 glycerol ester, an endogenous COX-2 metabolite of 2-arachidonoylglycerol, induces hyperalgesia and modulates NFκB activity. Br J Pharmacol 153(7):1538–1549.  https://doi.org/10.1038/bjp.2008.33.
      Imperatore R, Morello G, Luongo L, Taschler U, Romano R, Gregorio D, De Belardo C, Maione S, Marzo V, Di Cristino L (2015) Genetic deletion of monoacylglycerol lipase leads to impaired cannabinoid receptor CB1R signaling and anxiety-like behavior J Neurochem 135(4):799–813 https://doi.org/10.1111/jnc.13267.
      Kawamura Y, Fukaya M, Maejima T, Yoshida T, Miura E, Watanabe M, Ohno-Shosaku T, Kano M (2006) The CB1 cannabinoid receptor is the major cannabinoid receptor at excitatory presynaptic sites in the hippocampus and cerebellum. J Neurosci 26(11):2991–3001. https://doi.org/10.1523/JNEUROSCI.4872-05.2006. (PMID: 10.1523/JNEUROSCI.4872-05.2006165405776673964)
      Kerr DM, Harhen B, Okine BN, Egan LJ, Finn DP, Roche M (2013) The monoacylglycerol lipase inhibitor JZL184 attenuates LPS-induced increases in cytokine expression in the rat frontal cortex and plasma: differential mechanisms of action. Br J Pharmacol 169:808–819. https://doi.org/10.1111/j.1476-5381.2012.02237.x. (PMID: 10.1111/j.1476-5381.2012.02237.x230436753687661)
      Khasabova IA, Yao X, Paz J, Lewandowski CT, Lindberg AE, Coicou L, Burlakova N, Simone DA, Seybold VS (2014) JZL184 is antihyperalgesic in a murine model of cisplatin-induced peripheral neuropathy. Pharmacol Res 90:67–75. https://doi.org/10.1016/j.phrs.2014.09.008. (PMID: 10.1016/j.phrs.2014.09.00825304184)
      Lan R, Gatley J, Lu Q, Fan P, Fernando SR, Volkow ND, Pertwee R, Makriyannis A (1999) Design and synthesis of the CB1 selective cannabinoid antagonist AM281: a potential human SPECT ligand. AAPS PharmSci 1:E4. https://doi.org/10.1208/ps010204. (PMID: 10.1208/ps01020411741201)
      Li Q, Yan H, Wilson WA, Swartzwelder HS (2010) Modulation of NMDA and AMPA-mediated synaptic transmission by CB1 receptors in frontal cortical pyramidal cells. Brain Res 1342:127–137. https://doi.org/10.1016/j.brainres.2010.04.029. (PMID: 10.1016/j.brainres.2010.04.029204208132888260)
      Long JZ, Li W, Booker L, Burston JJ, Kinsey SG, Schlosburg JE, Pavón FJ, Serrano AM, Selley DE, Parsons LH, Lichtman AH, Cravatt BF (2009) Selective blockade of 2-arachydonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat Chem Biol 5(1):37–44. https://doi.org/10.1038/nchembio.129. (PMID: 10.1038/nchembio.12919029917)
      Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275. PMID:14907713. (PMID: 10.1016/S0021-9258(19)52451-614907713)
      Maya-López M, Rubio-López LC, Rodríguez-Alvarez IV, Orduño-Piceno J, Flores-Valdivia Y, Colonnello A, Rangel-López E, Túnez I, Prospéro-García O, Santamaría A (2020) A cannabinoid receptor-mediated mechanism participates in the neuroprotective effects of oleamide against excitotoxic damage in rat brain synaptosomes and cortical slices. Neurotox Res 37:126–135. https://doi.org/10.1007/s12640-019-00083-1. (PMID: 10.1007/s12640-019-00083-131286434)
      Maya-López M, Ruiz-Contreras HA, Negrete-Ruíz MJ, Martínez-Sánchez JE, Benítez-Valenzuela J, Colín-González AL, Villeda-Hernández J, Sánchez-Chapul L, Parra-Cid C, Rangel-López E, Santamaría A (2017) URB597 reduces biochemical, behavioral and morphological alterations in two neurotoxic models in rats. Biomed Pharmacother 88:745–753. https://doi.org/10.1016/j.biopha.2017.01.116. (PMID: 10.1016/j.biopha.2017.01.11628157650)
      Muddapu VR, Dharshini SAP, Chakravarthy VS, Gromiha MM (2020) Neurodegenerative diseases—is metabolic deficiency the root cause? Front Neurosci 14:213. https://doi.org/10.3389/fnins.2020.00213. (PMID: 10.3389/fnins.2020.00213322963007137637)
      Navia-Paldanius D, Aaltonen N, Lehtonen M, Savinainen JR, Taschler U, Radner FPW, Zimmermann R, Laitinen JT (2015) Increased tonic cannabinoid CB1R activity and brain region-specific desensitization of CB1R Gi/o signaling axis in mice with global genetic knockout of monoacylglycerol lipase. Eur J Pharmaceutical Sci 77:180–188. https://doi.org/10.1016/j.ejps.2015.06.005. (PMID: 10.1016/j.ejps.2015.06.005)
      Nomura DK, Morrison BE, Blankman JL, Long JZ, Kinsey SG, Marcondes MCG, Ward AM, Hahn YK, Lichtman AH, Conti B, Cravatt BF (2011) Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. Science 334(6057):809–813. https://doi.org/10.1126/science.1209200. (PMID: 10.1126/science.1209200220216723249428)
      Pertwee RG (2010) Receptors and channels targeted by synthetic cannabinoid receptor agonists and antagonists. Curr Med Chem 17(14):1360–1381. https://doi.org/10.2174/092986710790980050. (PMID: 10.2174/092986710790980050201669273013229)
      Pertwee RG, Howlett AC, Abood ME, Alexander SPH, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS, Kunos G, Mackie K, Mechoulam R, Ross RA (2010) International union of basic and clinical pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev 62(4):588–631. https://doi.org/10.1124/pr.110.003004.
      Petrosino S, Di Marzo V (2010) FAAH and MAGL inhibitors: therapeutic opportunities from regulating endocannabinoid levels. Curr Opin Investig Drugs 11:51–62. PMID:20047159. (PMID: 20047159)
      Pihlaja R, Takkinen J, Eskola O, Vasara J, López-Picón FR, Haaparanta-Solin M, Rinne JO (2015) Monoacylglycerol lipase inhibitor JZL184 reduces neuroinflammatory response in APdE9 mice and in adult mouse glial cells. J Neuroinflammation 12:81. https://doi.org/10.1186/s12974-015-0305-9. (PMID: 10.1186/s12974-015-0305-9259272134416350)
      Popov VN, Eprintsev AT, Fedorin DN, Igamberdiev AU (2010) Succinate dehydrogenase in Arabidopsis thaliana is regulated by light via phytochrome A. FEBS Lett 584(1):199–202. https://doi.org/10.1016/j.febslet.2009.11.057. (PMID: 10.1016/j.febslet.2009.11.05719932106)
      Rangel-López E, Colín-González AL, Paz-Loyola AL, Pinzón E, Torres I, Serratos IN, Castellanos P, Wajner M, Souza DO, Santamaría A (2015) Cannabinoid receptor agonists reduce the short-term mitochondrial dysfunction and oxidative stress linked to excitotoxicity in the rat brain. Neuroscience 285:97–106. https://doi.org/10.1016/j.neuroscience.2014.11.016. (PMID: 10.1016/j.neuroscience.2014.11.01625446347)
      Reyes-Soto CY, Villaseca-Flores M, Ovalle-Noguez EA, Nava-Osorio J, Galván-Arzate S, Rangel-López E, Maya-López M, Retana-Márquez S, Túnez I, Tinkov AA, Ke T, Aschner M, Santamaría A (2022) Oleamide reduces mitochondrial dysfunction and toxicity in rat cortical slices through the combined action of cannabinoid receptors activation and induction of antioxidant activity. Neurotox Res 40:2167–2178. https://doi.org/10.1007/s12640-022-00575-7. (PMID: 10.1007/s12640-022-00575-736069981)
      Sánchez-Rodríguez MA, Gómez O, Esteban PF, García-Ovejero D, Molina-Holgado E (2018) The endocannabinoid 2-arachidonoylglycerol regulates oligodendrocyte progenitor cell migration. Biochem Pharmacol 157:180–188. https://doi.org/10.1016/j.bcp.2018.09.006. (PMID: 10.1016/j.bcp.2018.09.00630195734)
      Scalvini L, Piomelli D, Mor M (2016) Monoglyceride lipase: structure and inhibitors. Chem Phys Lipids 197:13–24. https://doi.org/10.1016/j.chemphyslip.2015.07.011. (PMID: 10.1016/j.chemphyslip.2015.07.01126216043)
      Schlosburg JE, Blankman JL, Long JZ, Nomura DK, Pan B, Kinsey SG, Nguyen PT, Ramesh D, Booker L, Burston JJ, Thomas EA, Selley DE, Sim-Selley LJ, Liu Q, Lichtman AH, Cravatt BF (2010) Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system. Nature Neurosci 13(9):1113–1119. https://doi.org/10.1038/nn.2616. (PMID: 10.1038/nn.261620729846)
      Sugiura T, Kishimoto S, Oka S, Gokoh M (2006) Biochemistry, pharmacology and physiology of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand. Prog Lipid Res 45(5):405–446. https://doi.org/10.1016/j.plipres.2006.03.003. (PMID: 10.1016/j.plipres.2006.03.00316678907)
      Sylantyev S, Jensen TP, Ross RA, Rusakov DA (2013) Cannabinoid- and lysophosphatidylinositol-sensitive receptor GPR55 boosts neurotransmitter release at central synapses. Proc Natl Acad Sci USA 110(13):5193–5198. https://doi.org/10.1073/pnas.1211204110. (PMID: 10.1073/pnas.1211204110234720023612675)
      Tsuboi K, Uyama T, Okamoto Y, Ueda N (2018) Endocannabinoids and related N-acylethanolamines: biological activities and metabolism. Inflamm Regen 38:28. https://doi.org/10.1186/s41232-018-0086-5. (PMID: 10.1186/s41232-018-0086-5302882036166290)
      Túnez I, Tasset I, Pérez-De La Cruz V, Santamaria A (2010) 3-Nitropropionic acid as a tool to study the mechanisms involved in Huntington’s disease: past, present and future. Molecules 15(2):878–916. https://doi.org/10.3390/molecules15020878. (PMID: 10.3390/molecules15020878203359546263191)
      Viscomi MT, Oddi S, Latini L, Bisicchia E, Maccarrone M, Molinari M (2010) The endocannabinoid system: a new entry in remote cell death mechanisms. Exp Neurol 224:56–65. https://doi.org/10.1016/j.expneurol.2010.03.023. (PMID: 10.1016/j.expneurol.2010.03.02320353775)
      Xu J, Guo Q, Huo K, Song Y, Li N, Du J (2021) JZL184 protects hippocampal neurons from oxygen-glucose deprivation-induced injury via activating Nrf2/ARE signaling pathway. Human Exp Toxicol 40:1084–1094. https://doi.org/10.1177/0960327120984220. (PMID: 10.1177/0960327120984220)
      Xu JY, Chen C (2015) Endocannabinoids in synaptic plasticity and neuroprotection. Neuroscientist 21:152–168. https://doi.org/10.1177/1073858414524632. (PMID: 10.1177/107385841452463224571856)
      Yui K, Imataka G, Nakamura H, Ohara N, Naito Y (2015) Eicosanoids derived from arachidonic acid and their family prostaglandins and cyclooxygenase in psychiatric disorders. Curr Neuropharmacol 13(6):776–785. https://doi.org/10.2174/1570159X13666151102103305. (PMID: 10.2174/1570159X13666151102103305265219454759316)
      Zhang J, Chen C (2018) Alleviation of neuropathology by inhibition of monoacylglycerol lipase in APP transgenic mice lacking CB2 receptors. Mol Neurobiol 55(6):4802–4810. https://doi.org/10.1007/s12035-017-0689-x. (PMID: 10.1007/s12035-017-0689-x28733897)
      Zhang X, Thayer SA (2018) Monoacylglycerol lipase inhibitor JZL184 prevents HIV-1 gp120-induced synapse loss by altering endocannabinoid signaling. Neuropharmacology 128:269–281. https://doi.org/10.1016/j.neuropharm.2017.10.023.
      Zhu D, Zhang J, Hashem J, Gao F, Chen C (2023) Inhibition of 2-arachidonoylglycerol degradation enhances glial immunity by single-cell transcriptomic analysis. J Neuroinflammation 20(1):17. https://doi.org/10.1186/s12974-023-02701-4. (PMID: 10.1186/s12974-023-02701-4367178839885699)
    • Grant Information:
      R01ES03771 United States ES NIEHS NIH HHS; R01ES03771 United States ES NIEHS NIH HHS
    • Contributed Indexing:
      Keywords: Endocannabinoid system; JTE907; JZL184; Mitochondrial dysfunction; Monoacylglycerol lipase inhibition; Oxidative damage
    • Accession Number:
      0 (Endocannabinoids)
      EC 3.1.1.23 (Monoacylglycerol Lipases)
      0 (Receptors, Cannabinoid)
      0 (Benzodioxoles)
      0 (Receptor, Cannabinoid, CB1)
    • Publication Date:
      Date Created: 20230717 Date Completed: 20231129 Latest Revision: 20231129
    • Publication Date:
      20240829
    • Accession Number:
      10.1007/s12640-023-00661-4
    • Accession Number:
      37458923