The effect of choice on memory: The role of theta oscillations.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Blackwell Country of Publication: United States NLM ID: 0142657 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1540-5958 (Electronic) Linking ISSN: 00485772 NLM ISO Abbreviation: Psychophysiology Subsets: MEDLINE
    • Publication Information:
      Publication: Malden, MA : Blackwell
      Original Publication: Baltimore, Williams & Wilkins.
    • Subject Terms:
    • Abstract:
      People value the opportunity to exercise control over the environment or make their own choices. Recent studies have revealed that simply having the opportunity to make choices can facilitate memory performance, suggesting an interaction between reward (due to choice making) and memory systems. However, little is known about the electrophysiological basis of choice-related memory. In the current study, we used scalp electroencephalography combined with a choice encoding task to examine the role of theta oscillations (which have been widely connected to reward and memory processing) in choice-related memory formation. The encoding task had two conditions. In the choice condition, participants were asked to choose between two occluded memoranda by themselves, whereas in the fixed condition, the decision was made by the computer. Behavioral results showed the choice effect, with better performance in the choice condition than the fixed condition on the recognition test given after a 24-h delay. Increases in theta power during an early latency of encoding period predicted successful memory formation in the choice condition, but not in the fixed condition. Furthermore, decreases in theta power during a late latency predicted successful memory formation in both the fixed and the choice conditions. Finally, we observed increased theta power in the choice condition compared to the fixed condition during an early latency of encoding period and decreased theta power in the choice condition compared to the fixed condition during a late latency. Our results suggest that theta oscillations play a significant role in choice-related memory formation.
      (© 2023 Society for Psychophysiological Research.)
    • References:
      Adcock, R. A., Thangavel, A., Whitfield-Gabrieli, S., Knutson, B., & Gabrieli, J. D. (2006). Reward-motivated learning: Mesolimbic activation precedes memory formation. Neuron, 50(3), 507-517. https://doi.org/10.1016/j.neuron.2006.03.036.
      Ariely, D., & Norton, M. I. (2008). How actions create-not just reveal-preferences. Trends in Cognitive Sciences, 12(1), 13-16. https://doi.org/10.1016/j.tics.2007.10.008.
      Axmacher, N., Mormann, F., Fernández, G., Elger, C. E., & Fell, J. (2006). Memory formation by neuronal synchronization. Brain Research Reviews, 52(1), 170-182. https://doi.org/10.1016/j.brainresrev.2006.01.007.
      Begus, K., & Bonawitz, E. (2020). The rhythm of learning: Theta oscillations as an index of active learning in infancy. Developmental Cognitive Neuroscience, 45, 100810. https://doi.org/10.1016/j.dcn.2020.100810.
      Blair, R. C., & Karniski, W. (1993). An alternative method for significance testing of waveform difference potentials. Psychophysiology, 30(5), 518-524. https://doi.org/10.1111/j.1469-8986.1993.tb02075.x.
      Bosseler, A., Taulu, S., Pihko, E., Mäkelä, J., Imada, T., Ahonen, A., & Kuhl, P. (2013). Theta brain rhythms index perceptual narrowing in infant speech perception. Frontiers in Psychology, 4, 690. https://doi.org/10.3389/fpsyg.2013.00690.
      Burgess, A. P., & Gruzelier, J. H. (1997). Short duration synchronization of human theta rhythm during recognition memory. Neuroreport, 8(4), 1039-1042. https://doi.org/10.1097/00001756-199703030-00044.
      Burke, J. F., Zaghloul, K. A., Jacobs, J., Williams, R. B., Sperling, M. R., Sharan, A. D., & Kahana, M. J. (2013). Synchronous and asynchronous theta and gamma activity during episodic memory formation. The Journal of Neuroscience, 33(1), 292-304. https://doi.org/10.1523/JNEUROSCI.2057-12.2013.
      Buzsáki, G., & Moser, E. I. (2013). Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nature Neuroscience, 16(2), 130-138. https://doi.org/10.1038/nn.3304.
      Cavanagh, J. F., Figueroa, C. M., Cohen, M. X., & Frank, M. J. (2012). Frontal theta reflects uncertainty and unexpectedness during exploration and exploitation. Cerebral Cortex, 22(11), 2575-2586. https://doi.org/10.1093/cercor/bhr332.
      Cohen, M. X. (2014). Chapter 12. Analyzing neural time series data: Theory and practice (pp. 141-150). MIT Press. https://doi.org/10.7551/mitpress/9609.001.0001.
      Cohen, M. X., Bour, L., Mantione, M., Figee, M., Vink, M., Tijssen, M. A., Rootselaar, A. F. V., Munckhof, P. V. D., Richard Schuurman, P., & Denys, D. (2012). Top-down-directed synchrony from medial frontal cortex to nucleus accumbens during reward anticipation. Human Brain Mapping, 33(1), 246-252. https://doi.org/10.1002/hbm.21195.
      Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21. https://doi.org/10.1016/j.jneumeth.2003.10.009.
      Delorme, A., Sejnowski, T., & Makeig, S. (2007). Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage, 34(4), 1443-1449. https://doi.org/10.1016/j.neuroimage.2006.11.004.
      Ding, Z., Jiang, T., Chen, C., Murty, V. P., Xue, J., & Zhang, M. (2021). The effect of choice on intentional and incidental memory. Learning & Memory, 28(12), 440-444. https://doi.org/10.1101/lm.053433.121.
      DuBrow, S., Eberts, E. A., & Murty, V. P. (2019). A common mechanism underlying choice's influence on preference and memory. Psychonomic Bulletin & Review, 26, 1958-1966. https://doi.org/10.3758/s13423-019-01650-5.
      Düzel, E., Penny, W. D., & Burgess, N. (2010). Brain oscillations and memory. Current Opinion in Neurobiology, 20(2), 143-149. https://doi.org/10.1016/j.conb.2010.01.004.
      Fell, J., & Axmacher, N. (2011). The role of phase synchronization in memory processes. Nature Reviews Neuroscience, 12(2), 105-118. https://doi.org/10.1038/nrn2979.
      Fell, J., Klaver, P., Lehnertz, K., Grunwald, T., Schaller, C., Elger, C. E., & Fernández, G. (2001). Human memory formation is accompanied by rhinal-hippocampal coupling and decoupling. Nature Neuroscience, 4(12), 1259-1264. https://doi.org/10.1038/nn759.
      Fell, J., Ludowig, E., Rosburg, T., Axmacher, N., & Elger, C. E. (2008). Phase-locking within human mediotemporal lobe predicts memory formation. NeuroImage, 43(2), 410-419. https://doi.org/10.1016/j.neuroimage.2008.07.021.
      Fell, J., Ludowig, E., Staresina, B. P., Wagner, T., Kranz, T., Elger, C. E., & Axmacher, N. (2011). Medial temporal theta/alpha power enhancement precedes successful memory encoding: Evidence based on intracranial EEG. Journal of Neuroscience, 31(14), 5392-5397. https://doi.org/10.1523/JNEUROSCI.3668-10.2011.
      Fernández, G., Effern, A., Grunwald, T., Pezer, N., Lehnertz, K., Dümpelmann, M., Roost, D. V., & Elger, C. E. (1999). Real-time tracking of memory formation in the human rhinal cortex and hippocampus. Science, 285(5433), 1582-1585. https://doi.org/10.1126/science.285.5433.1582.
      Fujiwara, J., Usui, N., Park, S. Q., Williams, T., Iijima, T., Taira, M., Tsutsui, K., & Tobler, P. N. (2013). Value of freedom to choose encoded by the human brain. Journal of Neurophysiology, 110(8), 1915-1929. https://doi.org/10.1152/jn.01057.2012.
      Gable, P. A., Threadgill, A. H., & Adams, D. L. (2016). Neural activity underlying motor-action preparation and cognitive narrowing in approach-motivated goal states. Cognitive, Affective, & Behavioral Neuroscience, 16, 145-152. https://doi.org/10.3758/s13415-015-0381-4.
      Glazer, J. E., Kelley, N. J., Pornpattananangkul, N., Mittal, V. A., & Nusslock, R. (2018). Beyond the FRN: Broadening the time-course of EEG and ERP components implicated in reward processing. International Journal of Psychophysiology, 132, 184-202. https://doi.org/10.1016/j.ijpsycho.2018.02.002.
      Greenberg, J. A., Burke, J. F., Haque, R., Kahana, M. J., & Zaghloul, K. A. (2015). Decreases in theta and increases in high frequency activity underlie associative memory encoding. NeuroImage, 114, 257-263. https://doi.org/10.1016/j.neuroimage.2015.03.077.
      Griffiths, B. J., Mayhew, S. D., Mullinger, K. J., Jorge, J., Charest, I., Wimber, M., & Hanslmayr, S. (2019). Alpha/beta power decreases track the fidelity of stimulus-specific information. eLife, 8, e49562. https://doi.org/10.7554/eLife.49562.
      Gruber, M. J., Gelman, B. D., & Ranganath, C. (2014). States of curiosity modulate hippocampus-dependent learning via the dopaminergic circuit. Neuron, 84(2), 486-496. https://doi.org/10.1016/j.neuron.2014.08.060.
      Gruber, M. J., & Otten, L. J. (2010). Voluntary control over prestimulus activity related to encoding. Journal of Neuroscience, 30(29), 9793-9800. https://doi.org/10.1523/JNEUROSCI.0915-10.2010.
      Gruber, M. J., Watrous, A. J., Ekstrom, A. D., Ranganath, C., & Otten, L. J. (2013). Expected reward modulates encoding-related theta activity before an event. NeuroImage, 64, 68-74. https://doi.org/10.1016/j.neuroimage.2012.07.064.
      Guderian, S., Schott, B. H., Richardson-Klavehn, A., & Düzel, E. (2009). Medial temporal theta state before an event predicts episodic encoding success in humans. Proceedings of the National Academy of Sciences, 106(13), 5365-5370. https://doi.org/10.1073/pnas.0900289106.
      Hanslmayr, S., Spitzer, B., & Bäuml, K.-H. (2009). Brain oscillations dissociate between semantic and nonsemantic encoding of episodic memories. Cerebral Cortex, 19(7), 1631-1640. https://doi.org/10.1093/cercor/bhn197.
      Hanslmayr, S., Staresina, B. P., & Bowman, H. (2016). Oscillations and episodic memory: Addressing the synchronization/desynchronization conundrum. Trends in Neurosciences, 39(1), 16-25. https://doi.org/10.1016/j.tins.2015.11.004.
      Hanslmayr, S., & Staudigl, T. (2014). How brain oscillations form memories-A processing based perspective on oscillatory subsequent memory effects. NeuroImage, 85, 648-655. https://doi.org/10.1016/j.neuroimage.2013.05.121.
      Hanslmayr, S., Staudigl, T., & Fellner, M.-C. (2012). Oscillatory power decreases and long-term memory: The information via desynchronization hypothesis. Frontiers in Human Neuroscience, 6, 74. https://doi.org/10.3389/fnhum.2012.00074.
      Hanslmayr, S., Volberg, G., Wimber, M., Raabe, M., Greenlee, M. W., & Bäuml, K.-H. T. (2011). The relationship between brain oscillations and BOLD signal during memory formation: A combined EEG-fMRI study. Journal of Neuroscience, 31(44), 15674-15680. https://doi.org/10.1523/JNEUROSCI.3140-11.2011.
      Harris, K. D., & Thiele, A. (2011). Cortical state and attention. Nature Reviews Neuroscience, 12(9), 509-523. https://doi.org/10.1038/nrn3084.
      Hasselmo, M. E. (2005). What is the function of hippocampal theta rhythm? Linking behavioral data to phasic properties of field potential and unit recording data. Hippocampus, 15(7), 936-949. https://doi.org/10.1002/hipo.20116.
      Jutras, M. J., Fries, P., & Buffalo, E. A. (2013). Oscillatory activity in the monkey hippocampus during visual exploration and memory formation. Proceedings of the National Academy of Sciences, 110(32), 13144-13149. https://doi.org/10.1073/pnas.1302351110.
      Khader, P. H., Jost, K., Ranganath, C., & Rösler, F. (2010). Theta and alpha oscillations during working-memory maintenance predict successful long-term memory encoding. Neuroscience Letters, 468(3), 339-343. https://doi.org/10.1016/j.neulet.2009.11.028.
      Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29(2-3), 169-195. https://doi.org/10.1016/S0165-0173(98)00056-3.
      Klimesch, W., Doppelmayr, M., Schimke, H., & Pachinger, T. (1996). Alpha frequency, reaction time, and the speed of processing information. Journal of Clinical Neurophysiology, 13(6), 511-518. https://doi.org/10.1097/00004691-199611000-00006.
      Klimesch, W., Doppelmayr, M., Schimke, H., & Ripper, B. (1997). Theta synchronization and alpha desynchronization in a memory task. Psychophysiology, 34(2), 169-176. https://doi.org/10.1111/j.1469-8986.1997.tb02128.x.
      Lega, B. C., Jacobs, J., & Kahana, M. (2012). Human hippocampal theta oscillations and the formation of episodic memories. Hippocampus, 22(4), 748-761. https://doi.org/10.1002/hipo.20937.
      Leotti, L. A., & Delgado, M. R. (2011). The inherent reward of choice. Psychological Science, 22(10), 1310-1318. https://doi.org/10.1177/0956797611417005.
      Leotti, L. A., Iyengar, S. S., & Ochsner, K. N. (2010). Born to choose: The origins and value of the need for control. Trends in Cognitive Sciences, 14(10), 457-463. https://doi.org/10.1016/j.tics.2010.08.001.
      Lisman, J., Grace, A. A., & Duzel, E. (2011). A neoHebbian framework for episodic memory; Role of dopamine-dependent late LTP. Trends in Neurosciences, 34(10), 536-547. https://doi.org/10.1016/j.tins.2011.07.006.
      Long, N. M., Burke, J. F., & Kahana, M. J. (2014). Subsequent memory effect in intracranial and scalp EEG. NeuroImage, 84, 488-494. https://doi.org/10.1016/j.neuroimage.2013.08.052.
      Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG-and MEG-data. Journal of Neuroscience Methods, 164(1), 177-190. https://doi.org/10.1016/j.jneumeth.2007.03.024.
      Markant DuBrow, S., Davachi, L., & Gureckis, T. M. (2014). Deconstructing the effect of self-directed study on episodic memory. Memory & Cognition, 42(8), 1211-1224. https://doi.org/10.3758/s13421-014-0435-9.
      Meyniel, F., & Pessiglione, M. (2014). Better get back to work: A role for motor beta desynchronization in incentive motivation. Journal of Neuroscience, 34(1), 1-9. https://doi.org/10.1523/JNEUROSCI.1711-13.2014.
      Miendlarzewska, E. A., Bavelier, D., & Schwartz, S. (2016). Influence of reward motivation on human declarative memory. Neuroscience & Biobehavioral Reviews, 61, 156-176. https://doi.org/10.1016/j.neubiorev.2015.11.015.
      Murty, V. P., DuBrow, S., & Davachi, L. (2015). The simple act of choosing influences declarative memory. The Journal of Neuroscience, 35(16), 6255-6264. https://doi.org/10.1523/JNEUROSCI.4181-14.2015.
      Murty, V. P., DuBrow, S., & Davachi, L. (2019). Decision-making increases episodic memory via postencoding consolidation. Journal of Cognitive Neuroscience, 31(9), 1308-1317. https://doi.org/10.1162/jocn_a_01321.
      Murty, V. P., & Adcock, R. A. (2017). Distinct medial temporal lobe network states as neural contexts for motivated memory formation. In The hippocampus from cells to systems (pp. 467-501). Springer. https://doi.org/10.1007/978-3-319-50406-3_15.
      Nyhus, E., & Curran, T. (2010). Functional role of gamma and theta oscillations in episodic memory. Neuroscience & Biobehavioral Reviews, 34(7), 1023-1035. https://doi.org/10.1016/j.neubiorev.2009.12.014.
      Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, 1-9. https://doi.org/10.1155/2011/156869.
      Osipova, D., Takashima, A., Oostenveld, R., Fernández, G., Maris, E., & Jensen, O. (2006). Theta and gamma oscillations predict encoding and retrieval of declarative memory. Journal of Neuroscience, 26(28), 7523-7531. https://doi.org/10.1523/JNEUROSCI.1948-06.2006.
      Pacheco Estefan, D., Zucca, R., Arsiwalla, X., Principe, A., Zhang, H., Rocamora, R., Axmacher, N., & Verschure, P. F. (2021). Volitional learning promotes theta phase coding in the human hippocampus. Proceedings of the National Academy of Sciences, 118(10), e2021238118. https://doi.org/10.1073/pnas.2021238118.
      Paller, K. A., Kutas, M., & Mayes, A. R. (1987). Neural correlates of encoding in an incidental learning paradigm. Electroencephalography and Clinical Neurophysiology, 67(4), 360-371. https://doi.org/10.1016/0013-4694(87)90124-6.
      Paller, K. A., & Wagner, A. D. (2002). Observing the transformation of experience into memory. Trends in Cognitive Sciences, 6(2), 93-102. https://doi.org/10.1016/S1364-6613(00)01845-3.
      Poulet, J. F., Fernandez, L. M., Crochet, S., & Petersen, C. C. (2012). Thalamic control of cortical states. Nature Neuroscience, 15(3), 370-372. https://doi.org/10.1038/nn.3035.
      Poulet, J. F., & Petersen, C. C. (2008). Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature, 454(7206), 881-885. https://doi.org/10.1038/nature07150.
      Pu, M., & Yu, R. (2019). Post-encoding frontal theta activity predicts incidental memory in the reward context. Neurobiology of Learning and Memory, 158, 14-23. https://doi.org/10.1016/j.nlm.2019.01.008.
      Rutishauser, U., Ross, I. B., Mamelak, A. N., & Schuman, E. M. (2010). Human memory strength is predicted by theta-frequency phase-locking of single neurons. Nature, 464(7290), 903-907. https://doi.org/10.1038/nature08860.
      Sederberg, P. B., Gauthier, L. V., Terushkin, V., Miller, J. F., Barnathan, J. A., & Kahana, M. J. (2006). Oscillatory correlates of the primacy effect in episodic memory. NeuroImage, 32(3), 1422-1431. https://doi.org/10.1016/j.neuroimage.2006.04.223.
      Sederberg, P. B., Kahana, M. J., Howard, M. W., Donner, E. J., & Madsen, J. R. (2003). Theta and gamma oscillations during encoding predict subsequent recall. Journal of Neuroscience, 23(34), 10809-10814. https://doi.org/10.1523/JNEUROSCI.23-34-10809.2003.
      Sederberg, P. B., Schulze-Bonhage, A., Madsen, J. R., Bromfield, E. B., McCarthy, D. C., Brandt, A., Tully, M. S., & Kahana, M. J. (2007). Hippocampal and neocortical gamma oscillations predict memory formation in humans. Cerebral Cortex, 17(5), 1190-1196. https://doi.org/10.1093/cercor/bhl030.
      Shohamy, D., & Adcock, R. A. (2010). Dopamine and adaptive memory. Trends in Cognitive Sciences, 14(10), 464-472. https://doi.org/10.1016/j.tics.2010.08.002.
      Staudigl, T., & Hanslmayr, S. (2013). Theta oscillations at encoding mediate the context-dependent nature of human episodic memory. Current Biology, 23(12), 1101-1106. https://doi.org/10.1016/j.cub.2013.04.074.
      van Wingerden, M., Vinck, M., Lankelma, J., & Pennartz, C. M. (2010). Theta-band phase locking of orbitofrontal neurons during reward expectancy. Journal of Neuroscience, 30(20), 7078-7087. https://doi.org/10.1523/JNEUROSCI.3860-09.2010.
      Voss, J. L., Gonsalves, B. D., Federmeier, K. D., Tranel, D., & Cohen, N. J. (2011). Hippocampal brain-network coordination during volitional exploratory behavior enhances learning. Nature Neuroscience, 14(1), 115-120. https://doi.org/10.1038/nn.2693.
      Wittmann, B. C., Bunzeck, N., Dolan, R. J., & Düzel, E. (2007). Anticipation of novelty recruits reward system and hippocampus while promoting recollection. NeuroImage, 38(1), 194-202. https://doi.org/10.1016/j.neuroimage.2007.06.038.
      Xue, J., Jiang, T., Chen, C., Murty, V. P., Li, Y., Ding, Z., & Zhang, M. (2023). The interactive effect of external rewards and self-determined choice on memory. Psychological Research, 87(2), 1-10. https://doi.org/10.1007/s00426-023-01807-x.
    • Contributed Indexing:
      Keywords: EEG; choice-making; memory; motivation; subsequent memory effect (SME); theta oscillations
    • Publication Date:
      Date Created: 20230717 Date Completed: 20231108 Latest Revision: 20231113
    • Publication Date:
      20231215
    • Accession Number:
      10.1111/psyp.14390
    • Accession Number:
      37455343