L-Alanine promotes anti-infectious properties of Bacillus subtilis S-2 spores via the germination receptor gerAA.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: United States NLM ID: 101484100 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1867-1314 (Electronic) Linking ISSN: 18671306 NLM ISO Abbreviation: Probiotics Antimicrob Proteins Subsets: MEDLINE
    • Publication Information:
      Original Publication: New York, NY. : Springer
    • Subject Terms:
    • Abstract:
      Bacillus species, which have two cell-type forms (vegetative cells and spores), demonstrate a variety of probiotic functions in animal feed additives and human nutrition. We previously found that the probiotic effect of Bacillus subtilis S-2 spores with high germination response to L-alanine was specifically enhanced by the L-alanine pretreatment. The germination response of Bacillus is highly associated with the germination receptors of spores. However, how L-alanine-induced germination of spores exerts anti-infectious effect in epithelial cells remains unclear. In this study, we constructed the mutant strain of B. subtilis S-2 with germination receptor gerAA knockout to further explore the role of spore germination in resisting pathogen infection to cells. The differential probiotic effects of B. subtilis S-2 and S-2 ΔgerAA spores pretreated with L-alanine were evaluated in intestinal porcine epithelial cells (IPEC-J2) or Caco2 cells infected with enterotoxigenic Escherichia coli (ETEC) or following IL-1β stimulation. The results showed that the germination response of the S-2 ΔgerAA spores to L-alanine was significantly reduced. Compared with the S-2 ΔgerAA spores, the L-alanine-induced germination of B. subtilis S-2 spores significantly increased the activity of anti-adhesion of ETEC to IPEC-J2 cells and reduced the expression of inflammatory factors and cell receptors. L-alanine induction also significantly promoted the expression of autophagy-related proteins in the B. subtilis S-2 spores. These findings demonstrate that the gerAA germination receptor is essential for the probiotic function of Bacillus spores and that L-alanine treatment promotes the anti-infectious properties of the germinated spores in porcine intestinal epithelial IPEC-J2 cells. The result suggests the importance of germination receptor gerAA in helping spore germination and enhancing anti-infectious activity. The findings in the study benefit to screening of potential Bacillus probiotics and increasing probiotic efficacy induced by L-alanine as an adjuvant.
      (© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Li C, Cai H, Li S, Liu G, Deng X, Bryden WL, Zheng A (2022) Comparing the potential of Bacillus amyloliquefaciens CGMCC18230 with antimicrobial growth promoters for growth performance, bone development, expression of phosphorus transporters, and excreta microbiome in broiler chickens. Poult Sci 101(11):102126. (PMID: 36099660947456210.1016/j.psj.2022.102126)
      Cutting SM (2011) Bacillus probiotics. Food Microbiol 28(2):214–220. (PMID: 2131597610.1016/j.fm.2010.03.007)
      Lu S, Na K, Li Y, Zhang L, Fang Y, Guo X (2022) Bacillus-derived probiotics: metabolites and mechanisms involved in bacteria-host interactions. Crit Rev Food Sci Nutr 1–14.
      Leser TD, Knarreborg A, Worm J (2008) Germination and outgrowth of Bacillus subtilis and Bacillus licheniformis spores in the gastrointestinal tract of pigs. J Appl Microbiol 104(4):1025–1033. (PMID: 1800534810.1111/j.1365-2672.2007.03633.x)
      Piewngam P, Chiou J, Ling J, Liu R, Pupa P, Zheng Y, Otto M (2021) Enterococcal bacteremia in mice is prevented by oral administration of probiotic Bacillus spores. Sci Transl Med 13(621):eabf4692.
      De Oliveira MJK, Sakomura NK, de Paula Dorigam JC, Doranalli K, Soares L, da Silva Viana G (2019) Bacillus amyloliquefaciens CECT 5940 alone or in combination with antibiotic growth promoters improves performance in broilers under enteric pathogen challenge. Poult Sci 98(10):4391–4400. (PMID: 31002111674872510.3382/ps/pez223)
      Du R, Jiao S, Dai Y, An J, Lv J, Yan X, Wang J, Han B (2018) Probiotic Bacillus amyloliquefaciens C-1 improves growth performance, stimulates GH/IGF-1, and regulates the gut microbiota of growth-retarded beef calves. Front Microbiol 9(2006):02006. (PMID: 10.3389/fmicb.2018.02006)
      Du W, Xu H, Mei X, Cao X, Gong L, Wu Y, Li Y, Yu D, Liu S, Wang Y (2018) Probiotic Bacillus enhance the intestinal epithelial cell barrier and immune function of piglets. Benef microbes 9(5):743–754. (PMID: 3009989210.3920/BM2017.0142)
      Neag MA, Catinean A, Muntean DM, Pop MR, Bocsan CI, Botan EC, Buzoianu AD (2020) Probiotic Bacillus spores protect against acetaminophen induced acute liver injury in rats. Nutrients 12(3):632. (PMID: 32120994714615810.3390/nu12030632)
      Li L, Liu B, Cao J, Zhang H, Tian F, Yu L, Chen W, Zhai Q (2022) Different effects of Bacillus coagulans vegetative cells and spore isolates on constipation-induced gut microbiota dysbiosis in mice. Food Funct 13(18):9645–9657. (PMID: 3601780010.1039/D2FO01668K)
      Lu S, Liao X, Zhang L, Fang Y, Xiang M, Guo X (2021) Nutrient L-alanine-induced germination of Bacillus improves proliferation of spores and exerts probiotic effects in vitro and in vivo. Front Microbiol 12:796158. (PMID: 34925306867587110.3389/fmicb.2021.796158)
      Bernardeau M, Lehtinen MJ, Forssten SD, Nurminen P (2017) Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality. J Food Sci Technol 54(8):2570–2584. (PMID: 28740315550204110.1007/s13197-017-2688-3)
      Casula G, Cutting SM (2002) Bacillus probiotics: spore germination in the gastrointestinal tract. Appl Environ Microbiol 68(5):2344–2352. (PMID: 1197610712753310.1128/AEM.68.5.2344-2352.2002)
      Cartman ST, La Ragione RM, Woodward MJ (2008) Bacillus subtilis spores germinate in the chicken gastrointestinal tract. Appl Environ Microbiol 74(16):5254–5258. (PMID: 18586965251926010.1128/AEM.00580-08)
      Berthold-Pluta A, Pluta A, Garbowska M (2015) The effect of selected factors on the survival of Bacillus cereus in the human gastrointestinal tract. Microb Pathog 82:7–14. (PMID: 2579469710.1016/j.micpath.2015.03.015)
      Christie G, Setlow P (2020) Bacillus spore germination: Knowns, unknowns and what we need to learn. Cell Signal 74:109729. (PMID: 3272154010.1016/j.cellsig.2020.109729)
      Hudson KD, Corfe BM, Kemp EH, Feavers IM, Coote PJ, Moir A (2001) Localization of GerAA and GerAC germination proteins in the Bacillus subtilis spore. J Bacteriol 183(14):4317–4322. (PMID: 114185739532210.1128/JB.183.14.4317-4322.2001)
      Paidhungat M, Setlow P (2001) Localization of a germinant receptor protein (GerBA) to the inner membrane of Bacillus subtilis spores. J Bacteriol 183(13):3982–3990. (PMID: 113954629528110.1128/JB.183.13.3982-3990.2001)
      Mongkolthanaruk W, Cooper GR, Mawer JS, Allan RN, Moir A (2011) Effect of amino acid substitutions in the GerAA protein on the function of the alanine-responsive germinant receptor of Bacillus subtilis spores. J Bacteriol 193(9):2268–2275. (PMID: 21378197313310110.1128/JB.01398-10)
      Cooper GR, Moir A (2011) Amino acid residues in the GerAB protein important in the function and assembly of the alanine spore germination receptor of Bacillus subtilis 168. J Bacteriol 193(9):2261–2267. (PMID: 21378181313310310.1128/JB.01397-10)
      Madslien EH, Granum PE, Blatny JM, Lindbäck T (2014) L-alanine-induced germination in Bacillus licheniformis -the impact of native gerA sequences. BMC Microbiol 14(1):101. (PMID: 24755193402117510.1186/1471-2180-14-101)
      Paidhungat M, Setlow P (2000) Role of ger proteins in nutrient and nonnutrient triggering of spore germination in Bacillus subtilis. J Bacteriol 182(9):2513–2519. (PMID: 1076225311131510.1128/JB.182.9.2513-2519.2000)
      Alzahrani OM, Moir A (2014) Spore germination and germinant receptor genes in wild strains of Bacillus subtilis. J Appl Microbiol 117(3):741–749. (PMID: 2491660310.1111/jam.12566)
      Amon JD, Artzi L, Rudner DZ (2022) Genetic evidence for signal transduction within the Bacillus subtilis GerA germinant receptor. J Bacteriol 204(2):e0047021. (PMID: 3478030110.1128/jb.00470-21)
      Ramirez-Guadiana FH, Meeske AJ, Wang X, Rodrigues CDA, Rudner DZ (2017) The Bacillus subtilis germinant receptor GerA triggers premature germination in response to morphological defects during sporulation. Mol Microbiol 105(5):689–704. (PMID: 28605069557063310.1111/mmi.13728)
      Lu S, Tao T, Su Y, Hu J, Zhang L, Wang G, Li X, Guo X (2022) Whole genome sequencing and CRISPR/Cas9 gene editing of enterotoxigenic Escherichia coli BE311 for fluorescence labeling and enterotoxin analyses. Int J Mol Sci 23(14).
      Rhayat L, Maresca M, Nicoletti C, Perrier J, Brinch KS, Christian S, Devillard E, Eckhardt E (2019) Effect of Bacillus subtilis strains on intestinal barrier function and inflammatory response. Front immunol 10:564. (PMID: 30984172644961110.3389/fimmu.2019.00564)
      Çaykara B, Öztürk G, Alsaadoni H, Ötünçtemur A, Pençe S (2020) Evaluation of microRNA-124 expression in renal cell carcinoma. Balkan J Med Genet 23(2):73–78. (PMID: 3381607510.2478/bjmg-2020-0029)
      Damgaard MV, Treebak JT (2022) Protocol for qPCR analysis that corrects for cDNA amplification efficiency. STAR Protoc 3(3):101515. (PMID: 35819886928393110.1016/j.xpro.2022.101515)
      Lovdal IS, From C, Madslien EH, Romundset KC, Klufterud E, Rosnes JT, Granum PE (2012) Role of the gerA operon in L-alanine germination of Bacillus licheniformis spores. BMC Microbiol 12:34. (PMID: 22420404335920410.1186/1471-2180-12-34)
      Ramirez-Peralta A, Zhang P, Li YQ, Setlow P (2012) Effects of sporulation conditions on the germination and germination protein levels of Bacillus subtilis spores. Appl Environ Microbiol 78(8):2689–2697. (PMID: 22327596331880610.1128/AEM.07908-11)
      Sayer CV, Barat B, Popham DL (2019) Identification of L-Valine-initiated-germination-active genes in Bacillus subtilis using Tn-seq. PLoS ONE 14(6):e0218220. (PMID: 31199835656841910.1371/journal.pone.0218220)
      Ramirez-Peralta A, Stewart KA, Thomas SK, Setlow B, Chen Z, Li YQ, Setlow P (2012) Effects of the SpoVT regulatory protein on the germination and germination protein levels of spores of Bacillus subtilis. J Bacteriol 194(13):3417–3425. (PMID: 22522895343473510.1128/JB.00504-12)
      Zhang J, Fitz-James PC, Aronson AI (1993) Cloning and characterization of a cluster of genes encoding polypeptides present in the insoluble fraction of the spore coat of Bacillus subtilis. J Bacteriol 175(12):3757–3766. (PMID: 850933120479210.1128/jb.175.12.3757-3766.1993)
      Zou XY, Zhang M, Tu WJ, Zhang Q, Jin ML, Fang RD, Jiang S (2022) Bacillus subtilis inhibits intestinal inflammation and oxidative stress by regulating gut flora and related metabolites in laying hens. Animal 16(3):100474. (PMID: 3522017210.1016/j.animal.2022.100474)
      Docando F, Nuñez-Ortiz N, Serra CR, Arense P, Enes P, Oliva-Teles A, Díaz-Rosales P, Tafalla C (2022) Mucosal and systemic immune effects of Bacillus subtilis in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 124:142–155. (PMID: 3536737610.1016/j.fsi.2022.03.040)
      Tao X, He J, Lu J, Chen Z, Jin M, Jiao L, Masagounder K, Liu W, Zhou Q (2022) Effects of Bacillus subtilis DSM 32315 (Gutcare ® ) on the growth performance, antioxidant status, immune ability and intestinal function for juvenile Litopenaeus vannamei fed with high/low-fishmeal diets. Aquacult Rep 26(101282.
      Li Q, Li L, Chen Y, Yu C, Azevedo P, Gong J, Yang C (2022) Bacillus licheniformis PF9 improves barrier function and alleviates inflammatory responses against enterotoxigenic Escherichia coli F4 infection in the porcine intestinal epithelial cells. J Anim Sci Biotechnol 13(1):86. (PMID: 35799262926454810.1186/s40104-022-00746-8)
      Tsugukuni T, Shigemune N, Nakayama M, Miyamoto T (2020) Morphological changes in spores during germination in Bacillus cereus and Bacillus subtilis. Biocontrol Sci 25(4):203–213. (PMID: 3328117810.4265/bio.25.203)
      Lalloo R, Moonsamy G, Ramchuran S, Görgens J, Gardiner N (2010) Competitive exclusion as a mode of action of a novel Bacillus cereus aquaculture biological agent. Lett Appl Microbiol 50(6):563–570. (PMID: 2033792910.1111/j.1472-765X.2010.02829.x)
      La Ragione RM, Woodward MJ (2003) Competitive exclusion by Bacillus subtilis spores of Salmonella enterica serotype enteritidis and Clostridium perfringens in young chickens. Vet Microbiol 94(3):245–256. (PMID: 1281489210.1016/S0378-1135(03)00077-4)
      Tan S, Gu Y, Yang C, Dong Y, Mei X, Shen Q, Xu Y (2016) Bacillus amyloliquefaciens T-5 may prevent Ralstonia solanacearum infection through competitive exclusion. Biol Fert Soils 52(3):341–351. (PMID: 10.1007/s00374-015-1079-z)
      Ye X, Li P, Yu Q, Yang Q (2013) Bacillus subtilis inhibition of enterotoxic Escherichia coli-induced activation of MAPK signaling pathways in Caco-2 cells. Ann Microbiol 63(2):577–581. (PMID: 10.1007/s13213-012-0506-8)
      Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140(6):805–820. (PMID: 2030387210.1016/j.cell.2010.01.022)
      Liu C, Liu Y, Wang C, Guo Y, Cheng Y, Qian H, Zhao Y (2022) Lycopene-loaded bilosomes ameliorate high-fat diet-induced chronic nephritis in mice through the TLR4/MyD88 inflammatory pathway. Foods 11(19).
      Muduli C, Paria A, Srivastava R, Rathore G, Lal KK (2021) Aeromonas hydrophila infection induces Toll-like receptor 2 (tlr2) and associated downstream signaling in Indian catfish, Clarias magur (Hamilton, 1822). PeerJ 9:e12411. (PMID: 34909268864148710.7717/peerj.12411)
      Qiao J, Sun Z, Liang D, Li H (2020) Lactobacillus salivarius alleviates inflammation via NF-κB signaling in ETEC K88-induced IPEC-J2 cells. J Anim Sci Biotechnol 11(76.
      Wu Y, Wang Y, Zou H, Wang B, Sun Q, Fu A, Wang Y, Wang Y, Xu X, Li W (2017) Probiotic Bacillus amyloliquefaciens SC06 induces autophagy to protect against pathogens in macrophages. Front Microbiol 8:469. (PMID: 28382029536070710.3389/fmicb.2017.00469)
      Wu Y, Wang B, Xu H, Tang L, Li Y, Gong L, Wang Y, Li W (2019) Probiotic Bacillus attenuates oxidative stress- induced intestinal injury via p38-mediated autophagy. Front Microbiol 10:2185. (PMID: 31632359677906310.3389/fmicb.2019.02185)
      Tang L, Zeng Z, Zhou Y, Wang B, Zou P, Wang Q, Ying J, Wang F, Li X, Xu S, Zhao P, Li W (2021) Bacillus amyloliquefaciens SC06 induced AKT-FOXO signaling pathway-mediated autophagy to alleviate oxidative stress in IPEC-J2 cells. Antioxidants (Basel) 10(10).
      Matsuzawa Y, Oshima S, Nibe Y, Kobayashi M, Maeyashiki C, Nemoto Y, Nagaishi T, Okamoto R, Tsuchiya K, Nakamura T (2015) RIPK3 regulates p62–LC3 complex formation via the caspase-8-dependent cleavage of p62. Biochem bioph res co 456(1):298–304. (PMID: 10.1016/j.bbrc.2014.11.075)
      Wani A, Gupta M, Ahmad M, Shah AM, Ahsan AU, Qazi PH, Malik F, Singh G, Sharma PR, Kaddoumi A, Bharate SB, Vishwakarma RA, Kumar A (2019) Alborixin clears amyloid-β by inducing autophagy through PTEN-mediated inhibition of the AKT pathway. Autophagy 15(10):1810–1828. (PMID: 30894052673549810.1080/15548627.2019.1596476)
      Liu W, Xu L, Wang X, Zhang D, Sun G, Wang M, Wang M, Han Y, Chai R, Wang H (2021) PRDX1 activates autophagy via the PTEN-AKT signaling pathway to protect against cisplatin-induced spiral ganglion neuron damage. Autophagy 17(12):4159–4181. (PMID: 33749526872671710.1080/15548627.2021.1905466)
      Liu WJ, Ye L, Huang WF, Guo LJ, Xu ZG, Wu HL, Yang C, Liu HF (2016) p62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation. Cell Mol Biol Lett 21:29. (PMID: 28536631541575710.1186/s11658-016-0031-z)
    • Grant Information:
      HZY23010 University-Enterprise R&D Cooperation Projects; HZY21089 University-Enterprise R&D Cooperation Projects; 32072767 and 31672455 National Natural Science Foundation of China; CZY21001, CZP22003 Fundamental Research Funds for the Central Universities South-Central MinZu University
    • Contributed Indexing:
      Keywords: Bacillus; Germination receptor gerAA; IPEC-J2; L-Alanine; Spores
    • Accession Number:
      OF5P57N2ZX (Alanine)
      0 (Bacterial Proteins)
    • Publication Date:
      Date Created: 20230713 Date Completed: 20240813 Latest Revision: 20240924
    • Publication Date:
      20240924
    • Accession Number:
      10.1007/s12602-023-10121-2
    • Accession Number:
      37439954