Rational design of highly stabilized and selective adrenomedullin analogs.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: John Wiley & Sons Country of Publication: England NLM ID: 9506309 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1099-1387 (Electronic) Linking ISSN: 10752617 NLM ISO Abbreviation: J Pept Sci Subsets: MEDLINE
    • Publication Information:
      Original Publication: Chichester, West Sussex, UK : John Wiley & Sons, c1995-
    • Subject Terms:
    • Abstract:
      The peptide hormone adrenomedullin (ADM) consists of 52 amino acids with a disulfide bond and an amidated C-terminus. Due to the vasodilatory and cardioprotective effects, the agonistic activity of the peptide on the adrenomedullin 1 receptor (AM 1 R) is of high pharmacological interest. However, the wild-type peptide shows low metabolic stability leading to rapid degradation in the cardiovascular system. Previous work by our group has identified proteolytic cleavage sites and demonstrated stabilization of ADM by lipidation, cyclization, and N-methylation. Nevertheless, these ADM analogs showed reduced activity and subtype selectivity toward the closely related calcitonin gene-related peptide receptor (CGRPR). Here, we report on the rational development of ADM derivatives with increased proteolytic stability and high receptor selectivity. Stabilizing motifs, including lactamization and lipidation, were evaluated regarding AM 1 R and CGRPR activation. Furthermore, the central DKDK motif of the peptide was replaced by oligoethylene glycol linkers. The modified peptides were synthesized by Fmoc/t-Bu solid-phase peptide synthesis and receptor activation of AM 1 R and CGRPR was measured by cAMP reporter gene assay. Peptide stability was tested in human blood plasma and porcine liver homogenate and analyzed by RP-HPLC and MALDI-ToF mass spectrometry. Combination of the favorable lactam, lipidation, ethylene glycol linker, and previously described disulfide mimetic resulted in highly stabilized analogs with a plasma half-life of more than 144 h. The compounds display excellent AM 1 R activity and wild-type-like selectivity toward CGRPR. Additionally, dose-dependent vasodilatory effects of the ADM derivatives lasted for several hours in rodents. Thus, we successfully developed an ADM analog with long-term in vivo activity.
      (© 2023 The Authors. Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd.)
    • References:
      Shindo T, Kurihara Y, Nishimatsu H, et al. Vascular abnormalities and elevated blood pressure in mice lacking adrenomedullin gene. Circulation. 2001;104(16):1964-1971. doi:10.1161/hc4101.097111.
      Caron KM, Smithies O. Extreme hydrops fetalis and cardiovascular abnormalities in mice lacking a functional Adrenomedullin gene. Proc Natl Acad Sci U S A. 2001;98(2):615-619. doi:10.1073/pnas.98.2.615.
      Shimosawa T, Shibagaki Y, Ishibashi K, et al. Adrenomedullin, an endogenous peptide, counteracts cardiovascular damage. Circulation. 2002;105(1):106-111. doi:10.1161/hc0102.101399.
      Li M, Yee D, Magnuson TR, Smithies O, Caron KM. Reduced maternal expression of adrenomedullin disrupts fertility, placentation, and fetal growth in mice. J Clin Invest. 2006;116(10):2653-2662. doi:10.1172/JCI28462.
      Klein KR, Caron KM. Adrenomedullin in lymphangiogenesis: from development to disease. Cell Mol Life Sci. 2015;72(16):3115-3126. doi:10.1007/s00018-015-1921-3.
      Murphy TC, Samson WK. The novel vasoactive hormone, adrenomedullin, inhibits water drinking in the rat. Endocrinology. 1995;136(6):2459-2463. doi:10.1210/endo.136.6.7750467.
      Taylor MM, Samson WK. Adrenomedullin and the integrative physiology of fluid and electrolyte balance. Microsc Res Tech. 2002;57(2):105-109. doi:10.1002/jemt.10055.
      Kitamura K, Kangawa K, Kawamoto M, et al. Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem Biophys Res Commun. 1993;192(2):553-560. doi:10.1006/bbrc.1993.1451.
      Roh J, Chang CL, Bhalla A, Klein C, Hsu SY. Intermedin is a calcitonin/calcitonin gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes. J Biol Chem. 2004;279(8):7264-7274. doi:10.1074/jbc.M305332200.
      Wimalawansa SJ. Amylin, calcitonin gene-related peptide, calcitonin, and adrenomedullin: a peptide superfamily. Crit Rev Neurobiol. 1997;11(2-3):167-239. doi:10.1615/CritRevNeurobiol.v11.i2-3.40.
      Weston C, Winfield I, Harris M, et al. Receptor activity-modifying protein-directed G protein signaling specificity for the xalcitonin gene-related peptide family of receptors. J Biol Chem. 2016;291(42):21925-21944. doi:10.1074/jbc.M116.751362.
      Garelja ML, Au M, Brimble MA, et al. Molecular mechanisms of class B GPCR activation: insights from adrenomedullin receptors. ACS Pharmacol Transl Sci. 2020;3(2):246-262. doi:10.1021/acsptsci.9b00083.
      De Graaf C, Song G, Cao C, et al. Extending the structural view of class B GPCRs. Trends Biochem Sci. 2017;42(12):946-960. doi:10.1016/j.tibs.2017.10.003.
      Fischer JP, Els-Heindl S, Beck-Sickinger AG. Adrenomedullin-current perspective on a peptide hormone with significant therapeutic potential. Peptides. 2020;131:170347. doi:10.1016/j.peptides.2020.170347.
      Schönauer R, Kaiser A, Holze C, et al. Fluorescently labeled adrenomedullin allows real-time monitoring of adrenomedullin receptor trafficking in living cells. J Pept Sci. 2015;21(12):905-912. doi:10.1002/psc.2833.
      Schönauer R, Els-Heindl S, Beck-Sickinger AG. Adrenomedullin-new perspectives of a potent peptide hormone. J Pept Sci. 2017;23(7-8):472-485. doi:10.1002/psc.2953.
      Matsui H, Shimosawa T, Itakura K, Guanqun X, Ando K, Fujita T. Adrenomedullin can protect against pulmonary vascular remodeling induced by hypoxia. Circulation. 2004;109(18):2246-2251. doi:10.1161/01.CIR.0000127950.13380.FD.
      Nagaya N, Satoh T, Nishikimi T, et al. Hemodynamic, renal, and hormonal effects of adrenomedullin infusion in patients with congestive heart failure. Circulation. 2000;101(5):498-503. doi:10.1161/01.CIR.101.5.498.
      Nishikimi T, Karasawa T, Inaba C, et al. Effects of long-term intravenous administration of adrenomedullin (AM) plus hANP therapy in acute decompensated heart failure: a pilot study. Circ J. 2009;73(5):892-898. doi:10.1253/circj.CJ-08-0487.
      Kataoka Y, Miyazaki S, Yasuda S, et al. The first clinical pilot study of intravenous adrenomedullin administration in patients with acute myocardial infarction. J Cardiovasc Pharmacol. 2010;56(4):413-419. doi:10.1097/FJC.0b013e3181f15b45.
      Lau JL, Dunn MK. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem. 2018;26(10):2700-2707. doi:10.1016/j.bmc.2017.06.052.
      Bumbaca B, Li Z, Shah DK. Pharmacokinetics of protein and peptide conjugates. Drug Metab Pharmacokinet. 2019;34(1):42-54. doi:10.1016/j.dmpk.2018.11.001.
      Flamme I, Köbberling J, Lerchen H-G, et al., WO/2013/064508, 2013.
      Cheyuo C, Yang WL, Wang P. The critical role of adrenomedullin and its binding protein, AMBP-1, in neuroprotection. Biol Chem. 2012;393(6):429-439. doi:10.1515/hsz-2012-0103.
      Erak M, Bellmann-Sickert K, Els-Heindl S, Beck-Sickinger AG. Peptide chemistry toolbox-transforming natural peptides into peptide therapeutics. Bioorg Med Chem. 2018;26(10):2759-2765. doi:10.1016/j.bmc.2018.01.012.
      Russo AF. CGRP-based migraine therapeutics: how might they work, why so safe, and what next? ACS Pharmacol Transl Sci. 2019;2(1):2-8. doi:10.1021/acsptsci.8b00036.
      Schönauer R, Els-Heindl S, Fischer JP, Kobberling J, Riedl B, Beck-Sickinger AG. Adrenomedullin 2.0: adjusting key levers for metabolic stability. J Med Chem. 2016;59(12):5695-5705. doi:10.1021/acs.jmedchem.6b00126.
      Booe JM, Walker CS, Barwell J, et al. Structural basis for receptor activity-modifying protein-dependent selective peptide recognition by a G protein-coupled receptor. Mol Cell. 2015;58(6):1040-1052. doi:10.1016/j.molcel.2015.04.018.
      Fischer JP, Schönauer R, Els-Heindl S, et al. Adrenomedullin disulfide bond mimetics uncover structural requirements for AM1 receptor activation. J Pept Sci. 2019;25(3):e3147. doi:10.1002/psc.3147.
      Fischer JP, Els-Heindl S, Schönauer R, et al. The impact of adrenomedullin Thr22 on selectivity within the calcitonin receptor-like receptor/receptor activity-modifying protein system. ChemMedChem. 2018;13(17):1797-1805. doi:10.1002/cmdc.201800329.
      Lau J, Bloch P, Schäffer L, et al. Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. J Med Chem. 2015;58(18):7370-7380. doi:10.1021/acs.jmedchem.5b00726.
      Nagaya N, Kangawa K. Adrenomedullin in the treatment of pulmonary hypertension. Peptides. 2004;25(11):2013-2018. doi:10.1016/j.peptides.2004.07.007.
      Meeran K, O'shea D, Upton PD, et al. Circulating adrenomedullin does not regulate systemic blood pressure but increases plasma prolactin after intravenous infusion in humans: a pharmacokinetic study. J Clin Endocrinol Metab. 1997;82(1):95-100. doi:10.1210/jc.82.1.95.
      Martinez A, Oh HR, Unsworth EJ, et al. Matrix metalloproteinase-2 cleavage of adrenomedullin produces a vasoconstrictor out of a vasodilator. Biochem J. 2004;383(3):413-418. doi:10.1042/BJ20040920.
      Lewis LK, Smith MW, Brennan SO, Yandle TG, Richards AM, Nicholls MG. Degradation of human adrenomedullin(1-52) by plasma membrane enzymes and identification of metabolites. Peptides. 1997;18(5):733-739. doi:10.1016/S0196-9781(97)00005-3.
      Petersen KA, Birk S, Kitamura K, Olesen J. Effect of adrenomedullin on the cerebral circulation: relevance to primary headache disorders. Cephalalgia. 2009;29(1):23-30. doi:10.1111/j.1468-2982.2008.01695.x.
      Gentilucci L, De Marco R, Cerisoli L. Chemical modifications designed to improve peptide stability: incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Curr Pharm Des. 2010;16(28):3185-3203. doi:10.2174/138161210793292555.
      Watkins HA, Au M, Bobby R, et al. Identification of key residues involved in adrenomedullin binding to the AM1 receptor. Br J Pharmacol. 2013;169(1):143-155. doi:10.1111/bph.12118.
      Moad HE, Pioszak AA. Selective CGRP and adrenomedullin peptide binding by tethered RAMP-calcitonin receptor-like receptor extracellular domain fusion proteins. Protein Sci. 2013;22(12):1775-1785. doi:10.1002/pro.2377.
      Van Witteloostuijn SB, Pedersen SL, Jensen KJ. Half-life extension of biopharmaceuticals using chemical methods: alternatives to PEGylation. ChemMedChem. 2016;11(22):2474-2495. doi:10.1002/cmdc.201600374.
      Zhang L, Bulaj G. Converting peptides into drug leads by lipidation. Curr Med Chem. 2012;19(11):1602-1618. doi:10.2174/092986712799945003.
      Ahrens VM, Bellmann-Sickert K, Beck-Sickinger AG. Peptides and peptide conjugates: therapeutics on the upward path. Future Med Chem. 2012;4(12):1567-1586. doi:10.4155/fmc.12.76.
      Bierer D, Flamme I, Köbberling J, et al. WO 2016/046301, 2015.
      Besheer A, Liebner R, Meyer M, Winter G. In: Scholz C, Kressler J, eds. Tailored Polymer Architectures for Pharmaceutical and Biomedical Applications. American Chemical Society; 2013. Ch. 13.
      Young MA, Malavalli A, Winslow N, Vandegriff KD, Winslow RM. Toxicity and hemodynamic effects after single dose administration of MalPEG-hemoglobin (MP4) in rhesus monkeys. Transl Res. 2007;149(6):333-342. doi:10.1016/j.trsl.2006.09.007.
    • Contributed Indexing:
      Keywords: GPCR; peptide stability; peptide synthesis; selectivity
    • Accession Number:
      148498-78-6 (Adrenomedullin)
      0 (Receptors, Adrenomedullin)
      0 (Disulfides)
    • Publication Date:
      Date Created: 20230709 Date Completed: 20231106 Latest Revision: 20231106
    • Publication Date:
      20231215
    • Accession Number:
      10.1002/psc.3530
    • Accession Number:
      37423610