GLP-1RAs and cardiovascular disease: is the endothelium a relevant platform?

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Verlag Country of Publication: Germany NLM ID: 9200299 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-5233 (Electronic) Linking ISSN: 09405429 NLM ISO Abbreviation: Acta Diabetol Subsets: MEDLINE
    • Publication Information:
      Publication: Berlin : Springer Verlag
      Original Publication: Berlin : Springer International, c1991-
    • Subject Terms:
    • Abstract:
      Hyperglycemia strongly affects endothelial function and activation, which in turn increases the risk of atherosclerotic cardiovascular disease. Among pharmacotherapies aimed at lowering blood glucose levels, glucagon-like peptide 1 receptor agonists (GLP-1RA) represent a class of drugs involved in the improvement of the endothelium damage and the progression of cardiovascular diseases. They show antihypertensive and antiatherosclerotic actions due at least in part to direct favorable actions on the coronary vascular endothelium, such as oxidative stress reduction and nitric oxide increase. However, cumulative peripheral indirect actions could also contribute to the antiatherosclerotic functions of GLP-1/GLP-1R agonists, including metabolism and gut microbiome regulation. Therefore, further research is necessary to clarify the specific role of this drug class in the management of cardiovascular disease and to identify specific cellular targets involved in the protective signal transduction. In the present review, we provide an overview of the effects of GLP-1RAs treatment on cardiovascular disease with particular attention on potential molecular mechanisms involving endothelium function on formation and progression of atherosclerotic plaque.
      (© 2023. The Author(s).)
    • References:
      Altschul A (1954) Endothelium. Its development, morphology, function and pathology. The MacMillan Company, New York.
      Aird WC (2012) Endothelial cell heterogeneity. Cold Spring Harb Perspect Med 2:a006429. https://doi.org/10.1101/cshperspect.a006429. (PMID: 10.1101/cshperspect.a006429223157153253027)
      Triggle CR, Ding H, Marei I, Anderson TJ, Hollenberg MD (2020) Why the endothelium? the endothelium as a target to reduce diabetes-associated vascular disease. Can J Physiol Pharmacol 98:415–430. https://doi.org/10.1139/cjpp-2019-0677. (PMID: 10.1139/cjpp-2019-067732150686)
      Sena CM, Pereira AM, Seiça R (2013) Endothelial dysfunction—a major mediator of diabetic vascular disease. Biochim Biophys Acta 1832:2216–2231. https://doi.org/10.1016/j.bbadis.2013.08.006. (PMID: 10.1016/j.bbadis.2013.08.00623994612)
      Liao JK (2013) Linking endothelial dysfunction with endothelial cell activation. J Clin Investig 123:540–541. https://doi.org/10.1172/JCI66843. (PMID: 10.1172/JCI66843234855803561809)
      Shemiakova T, Ivanova E, Grechko AV, Gerasimova EV, Sobenin IA, Orekhov AN (2020) Mitochondrial dysfunction and DNA damage in the context of pathogenesis of atherosclerosis. Biomedicines 8:166. https://doi.org/10.3390/biomedicines8060166. (PMID: 10.3390/biomedicines8060166325708317344998)
      Maruhashi T, Higashi Y (2021) Pathophysiological association between diabetes mellitus and endothelial dysfunction. Antioxidants (Basel) 10:1306. https://doi.org/10.3390/antiox10081306. (PMID: 10.3390/antiox1008130634439553)
      Müller TD, Finan B, Bloom SR et al (2019) Glucagon-like peptide 1 (GLP-1). Mol Metab 30:72–130. https://doi.org/10.1016/j.molmet.2019.09.010. (PMID: 10.1016/j.molmet.2019.09.010317671826812410)
      Vilsbøll T, Agersø H, Krarup T, Holst JJ (2003) Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects. J Clin Endocrinol Metab 88:220–224. https://doi.org/10.1210/jc.2002-021053. (PMID: 10.1210/jc.2002-02105312519856)
      Brown E, Cuthbertson DJ, Wilding JP (2018) Newer GLP-1 receptor agonists and obesity-diabetes. Peptides 100:61–67. https://doi.org/10.1016/j.peptides.2017.12.009. (PMID: 10.1016/j.peptides.2017.12.00929412833)
      Berndt J, Ooi SL, Pak SC (2021) What is the mechanism driving the reduction of cardiovascular events from glucagon-like peptide-1 receptor agonists?-a mini review. Molecules 26:4822. https://doi.org/10.3390/molecules26164822. (PMID: 10.3390/molecules26164822344434108400553)
      Tanaka A, Node K (2018) Clinical application of glucagon-like peptide-1 receptor agonists in cardiovascular disease: lessons from recent clinical cardiovascular outcomes trials. Cardiovasc Diabetol 17(1):85. https://doi.org/10.1186/s12933-018-0731-y. (PMID: 10.1186/s12933-018-0731-y298952905996475)
      Zelniker TA, Wiviott SD, Raz I et al (2019) Comparison of the effects of glucagon-like peptide receptor agonists and sodium-glucose cotransporter 2 inhibitors for prevention of major adverse cardiovascular and renal outcomes in type 2 diabetes mellitus. Circulation 139:2022–2031. https://doi.org/10.1161/CIRCULATIONAHA.118.038868. (PMID: 10.1161/CIRCULATIONAHA.118.03886830786725)
      Koska J, Sands M, Burciu C et al (2015) Exenatide protects against glucose- and lipid-induced endothelial dysfunction: evidence for direct vasodilation effect of GLP-1 receptor agonists in humans. Diabetes 64:2624–2635. https://doi.org/10.2337/db14-0976. (PMID: 10.2337/db14-0976257203884477348)
      Oh YS, Jun HS (2017) Effects of glucagon-like peptide-1 on oxidative stress and Nrf2 signaling. Int J Mol Sci 19:26. https://doi.org/10.3390/ijms19010026. (PMID: 10.3390/ijms19010026292719105795977)
      Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M (2008) Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 117:2340–2350. https://doi.org/10.1161/CIRCULATIONAHA.107.739938. (PMID: 10.1161/CIRCULATIONAHA.107.73993818427132)
      Helmstädter J, Keppeler K, Küster L, Münzel T, Daiber A, Steven S (2022) Glucagon-like peptide-1 (GLP-1) receptor agonists and their cardiovascular benefits-the role of the GLP-1 receptor. Br J Pharmacol 179:659–676. https://doi.org/10.1111/bph.15462. (PMID: 10.1111/bph.1546233764504)
      Ussher JR, Drucker DJ (2012) Cardiovascular biology of the incretin system. Endocr Rev 33:187–215. https://doi.org/10.1210/er.2011-1052. (PMID: 10.1210/er.2011-105222323472)
      Liu H, Dear AE, Knudsen LB, Simpson RW (2009) A long-acting glucagon-like peptide-1 analogue attenuates induction of plasminogen activator inhibitor type-1 and vascular adhesion molecules. J Endocrinol 201:59–66. https://doi.org/10.1677/JOE-08-0468. (PMID: 10.1677/JOE-08-046819136619)
      Gaspari T, Liu H, Welungoda I et al (2011) A GLP-1 receptor agonist liraglutide inhibits endothelial cell dysfunction and vascular adhesion molecule expression in an ApoE-/- mouse model. Diabetes Vasc Dis Res 8:117–124. https://doi.org/10.1177/1479164111404257. (PMID: 10.1177/1479164111404257)
      Chang W, Zhu F, Zheng H et al (2019) Glucagon-like peptide-1 receptor agonist dulaglutide prevents ox-LDL-induced adhesion of monocytes to human endothelial cells: an implication in the treatment of atherosclerosis. Mol Immunol 116:73–79. https://doi.org/10.1016/j.molimm.2019.09.021. (PMID: 10.1016/j.molimm.2019.09.02131630078)
      Yue W, Li Y, Ou D, Yang Q (2019) The GLP-1 receptor agonist liraglutide protects against oxidized LDL-induced endothelial inflammation and dysfunction via KLF2. IUBMB Life 71:1347–1354. https://doi.org/10.1002/iub.2046. (PMID: 10.1002/iub.204630969479)
      Balestrieri ML, Rizzo MR, Barbieri M et al (2015) Sirtuin 6 expression and inflammatory activity in diabetic atherosclerotic plaques: effects of incretin treatment. Diabetes 64:1395–1406. https://doi.org/10.2337/db14-1149. (PMID: 10.2337/db14-114925325735)
      Barbieri M, Marfella R, Esposito A et al (2017) Incretin treatment and atherosclerotic plaque stability: role of adiponectin/APPL1 signaling pathway. J Diabetes Complicat 31:295–303. https://doi.org/10.1016/j.jdiacomp.2016.10.001. (PMID: 10.1016/j.jdiacomp.2016.10.001)
      Chen PY, Qin L, Baeyens N et al (2015) Endothelial-to-mesenchymal transition drives atherosclerosis progression. J Clin Investig 125:4514–4528. https://doi.org/10.1172/JCI82719. (PMID: 10.1172/JCI82719265176964665771)
      Rieder F, Kessler SP, West GA et al (2011) Inflammation-induced endothelial-to-mesenchymal transition: a novel mechanism of intestinal fibrosis. Am J Pathol 179:2660–2673. https://doi.org/10.1016/j.ajpath.2011.07.042. (PMID: 10.1016/j.ajpath.2011.07.042219453223204019)
      Yu CH, Suriguga GM, Liu WJ et al (2017) High glucose induced endothelial to mesenchymal transition in human umbilical vein endothelial cell. Exp Mol Pathol 102:377–383. https://doi.org/10.1016/j.yexmp.2017.03.007. (PMID: 10.1016/j.yexmp.2017.03.00728347704)
      Tsai TH, Lee CH, Cheng CI et al (2019) Liraglutide inhibits endothelial-to-mesenchymal transition and attenuates neointima formation after endovascular injury in streptozotocin-induced diabetic mice. Cells 8:589. https://doi.org/10.3390/cells8060589. (PMID: 10.3390/cells8060589312079396628350)
      Shi Y, Zhang H, Huang S et al (2022) Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials. Signal Transduct Target Ther 25(7):200. https://doi.org/10.1038/s41392-022-01055-2. (PMID: 10.1038/s41392-022-01055-2)
      Scisciola L, Rizzo MR, Cataldo V et al (2020) Incretin drugs effect on epigenetic machinery: new potential therapeutic implications in preventing vascular diabetic complications. FASEB J 34:16489–16503. https://doi.org/10.1096/fj.202000860RR. (PMID: 10.1096/fj.202000860RR33090591)
      Rakipovski G, Rolin B, Nøhr J et al (2018) The GLP-1 analogs liraglutide and semaglutide reduce atherosclerosis in ApoE-/- and LDLr-/- mice by a mechanism that includes inflammatory pathways. JACC Basic Transl Sci 3:844–857. https://doi.org/10.1016/j.jacbts.2018.09.004. (PMID: 10.1016/j.jacbts.2018.09.004306231436314963)
      Arakawa M, Mita T, Azuma K et al (2010) Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4. Diabetes 59:1030–1037. https://doi.org/10.2337/db09-1694. (PMID: 10.2337/db09-1694200681382844811)
      Bruen R, Curley S, Kajani S et al (2017) Liraglutide dictates macrophage phenotype in apolipoprotein E null mice during early atherosclerosis. Cardiovasc Diabetol 16:143. https://doi.org/10.1186/s12933-017-0626-3. (PMID: 10.1186/s12933-017-0626-3291107155674826)
      Maiseyeu A, Di L, Ravodina A et al (2022) Plaque-targeted, proteolysis-resistant, activatable and MRI-visible nano-GLP-1 receptor agonist targets smooth muscle cell differentiation in atherosclerosis. Theranostics 12:2741–2757. https://doi.org/10.7150/thno.66456. (PMID: 10.7150/thno.66456354018138965488)
      Helmstädter J, Frenis K, Filippou K et al (2020) Endothelial GLP-1 (glucagon-like peptide-1) receptor mediates cardiovascular protection by liraglutide in mice with experimental arterial hypertension. Arterioscler Thromb Vasc Biol 40:145–158. https://doi.org/10.1161/atv.0000615456.97862.30. (PMID: 10.1161/atv.0000615456.97862.3031747801)
      Hupe-Sodmann K, McGregor GP, Bridenbaugh R et al (1995) Characterisation of the processing by human neutral endopeptidase 24.11 of GLP-1(7–36) amide and comparison of the substrate specificity of the enzyme for other glucagon-like peptides. Regul Pept 58:149–156. https://doi.org/10.1016/0167-0115(95)00063-h. (PMID: 10.1016/0167-0115(95)00063-h8577927)
      Tomas E, Habener JF (2010) Insulin-like actions of glucagon-like peptide-1: a dual receptor hypothesis. Trends Endocrinol Metab 21:59–67. https://doi.org/10.1016/j.tem.2009.11.007. (PMID: 10.1016/j.tem.2009.11.00720018525)
      Deacon CF (2004) Circulation and degradation of GIP and GLP-1. Horm Metab Res 36:761–765. https://doi.org/10.1055/s-2004-826160. (PMID: 10.1055/s-2004-82616015655705)
      Li J, Zheng J, Wang S, Lau HK, Fathi A, Wang Q (2017) Cardiovascular benefits of native GLP-1 and its metabolites: an indicator for GLP-1-therapy strategies. Front Physiol 8:15. https://doi.org/10.3389/fphys.2017.00015. (PMID: 10.3389/fphys.2017.00015281941135276855)
      Ban K, Kim H, Cho J et al (2010) Glp-1(9–36) protects cardiomyocytes and endothelial cells from ischemia reperfusion injury via cytoprotective pathways independent of the glp-1 receptor. Endocrinology 151:1520–1531. https://doi.org/10.1210/en.2009-1197. (PMID: 10.1210/en.2009-119720172966)
      Burgmaier M, Liberman A, Möllmann J et al (2013) Glucagon-like peptide-1 (GLP-1) and its split products GLP-1(9–37) and GLP-1(28–37) stabilize atherosclerotic lesions in apoe-/- mice. Atherosclerosis 231:427–435. https://doi.org/10.1016/j.atherosclerosis.2013.08.033. (PMID: 10.1016/j.atherosclerosis.2013.08.03324267262)
      Walter DH, Rittig K, Bahlmann FH et al (2002) Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation 105:3017–3024. https://doi.org/10.1161/01.cir.0000018166.84319.55. (PMID: 10.1161/01.cir.0000018166.84319.5512081997)
      Higashi Y (2022) Roles of oxidative stress and inflammation in vascular endothelial dysfunction-related disease. Antioxidants (Basel) 11:1958. https://doi.org/10.3390/antiox11101958. (PMID: 10.3390/antiox1110195836290681)
      Schmidt-Lucke C, Rössig L, Fichtlscherer S et al (2005) Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation 111:2981–2987. https://doi.org/10.1161/CIRCULATIONAHA.104.504340. (PMID: 10.1161/CIRCULATIONAHA.104.50434015927972)
      Tu Q, Wang JF, Xie HQ et al (2021) Up-regulation of GLP-1R improved the dysfunction of late EPCs under hyperglycemia by regulating SIRT1 expression. Mol Cell Endocrinol 538:111455. https://doi.org/10.1016/j.mce.2021.111455. (PMID: 10.1016/j.mce.2021.11145534509564)
      Yang Y, Zhou Y, Wang Y et al (2020) Exendin-4 reverses high glucose-induced endothelial progenitor cell dysfunction via SDF-1β/CXCR7-AMPK/p38-MAPK/IL-6 axis. Acta Diabetol 57:1315–1326. https://doi.org/10.1007/s00592-020-01551-3. (PMID: 10.1007/s00592-020-01551-332556532)
      Theodorou K, Boon RA (2018) Endothelial cell metabolism in atherosclerosis. Front Cell Dev Biol 6:82. https://doi.org/10.3389/fcell.2018.00082. (PMID: 10.3389/fcell.2018.00082301319576090045)
      Wong BW, Marsch E, Treps L, Baes M, Carmeliet P (2017) Endothelial cell metabolism in health and disease: impact of hypoxia. EMBO J 36:2187–2203. https://doi.org/10.15252/embj.201696150. (PMID: 10.15252/embj.201696150286377935538796)
      Won JC, Park JY, Kim YM et al (2010) Peroxisome proliferator-activated receptor-gamma coactivator 1-alpha overexpression prevents endothelial apoptosis by increasing ATP/ADP translocase activity. Arterioscler Thromb Vasc Biol 30:290–297. https://doi.org/10.1161/ATVBAHA.109.198721. (PMID: 10.1161/ATVBAHA.109.19872119965780)
      Toral M, Romero M, Jiménez R et al (2015) Carnitine palmitoyltransferase-1 up-regulation by PPAR-β/δ prevents lipid-induced endothelial dysfunction. Clin Sci (Lond) 129:823–837. https://doi.org/10.1042/CS20150111. (PMID: 10.1042/CS2015011126253087)
      Patella F, Schug ZT, Persi E et al (2015) Proteomics-based metabolic modeling reveals that fatty acid oxidation (FAO) controls endothelial cell (EC) permeability. Mol Cell Proteomics 14:621–634. https://doi.org/10.1074/mcp.M114.045575. (PMID: 10.1074/mcp.M114.045575255737454349982)
      Xiong J, Kawagishi H, Yan Y et al (2018) A metabolic basis for endothelial-to-mesenchymal transition. Mol Cell 69:689-698.e7. https://doi.org/10.1016/j.molcel.2018.01.010. (PMID: 10.1016/j.molcel.2018.01.010294299255816688)
      Timper K, Del Río-Martín A, Cremer AL et al (2020) GLP-1 receptor signaling in astrocytes regulates fatty acid oxidation, mitochondrial integrity, and function. Cell Metab 31:1189-1205.e13. https://doi.org/10.1016/j.cmet.2020.05.001. (PMID: 10.1016/j.cmet.2020.05.001324339227272126)
      Xu F, Lin B, Zheng X et al (2016) GLP-1 receptor agonist promotes brown remodelling in mouse white adipose tissue through SIRT1. Diabetologia 59:1059–1069. https://doi.org/10.1007/s00125-016-3896-5. (PMID: 10.1007/s00125-016-3896-526924394)
      Wang H, Wang L, Li Y et al (2021) The HIF-2α/PPARα pathway is essential for liraglutide-alleviated, lipid-induced hepatic steatosis. Biomed Pharmacother 140:111778. https://doi.org/10.1016/j.biopha.2021.111778. (PMID: 10.1016/j.biopha.2021.11177834062416)
      Choung JS, Lee YS, Jun HS (2017) Exendin-4 increases oxygen consumption and thermogenic gene expression in muscle cells. J Mol Endocrinol 58:79–90. https://doi.org/10.1530/JME-16-0078. (PMID: 10.1530/JME-16-007827872157)
      Rustia AJ, Paterson JS, Best G, Sokoya EM (2021) Microbial disruption in the gut promotes cerebral endothelial dysfunction. Physiol Rep 9:e15100. https://doi.org/10.14814/phy2.15100. (PMID: 10.14814/phy2.15100347554668578899)
      Rizza S, Piciucchi G, Mavilio M et al (2021) Effect of deprescribing in elderly patients with type 2 diabetes: iDegLira might improve quality of life. Biomed Pharmacother 144:112341. https://doi.org/10.1016/j.biopha.2021.112341. (PMID: 10.1016/j.biopha.2021.11234134678725)
      Rizza S, Pietrucci D, Longo S et al (2023) Impact of insulin degludec/liraglutide fixed combination on the gut microbiomes of elderly patients with type 2 diabetes: results from a Subanalysis of a small non-randomised single arm study. Aging Dis 14:319–324. https://doi.org/10.14336/AD.2023.0118. (PMID: 10.14336/AD.2023.01183700806110017153)
    • Grant Information:
      2017FM74HK Ministero dell'Istruzione, dell'Università e della Ricerca
    • Contributed Indexing:
      Keywords: Atherosclerosis; Diabetes; Endothelium; GLP-1 receptor agonists
    • Accession Number:
      0 (Hypoglycemic Agents)
      0 (Glucagon-Like Peptide-1 Receptor)
    • Publication Date:
      Date Created: 20230704 Date Completed: 20230927 Latest Revision: 20240402
    • Publication Date:
      20240403
    • Accession Number:
      PMC10520195
    • Accession Number:
      10.1007/s00592-023-02124-w
    • Accession Number:
      37401947