Is it all the RAGE? Defining the role of the receptor for advanced glycation end products in Parkinson's disease.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley on behalf of the International Society for Neurochemistry Country of Publication: England NLM ID: 2985190R Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1471-4159 (Electronic) Linking ISSN: 00223042 NLM ISO Abbreviation: J Neurochem Subsets: MEDLINE
    • Publication Information:
      Publication: 2001- : Oxford, UK : Wiley on behalf of the International Society for Neurochemistry
      Original Publication: New York : Raven Press
    • Subject Terms:
    • Abstract:
      The receptor for advanced glycation end products (RAGE) is a transmembrane receptor that belongs to the immunoglobulin superfamily and is extensively associated with chronic inflammation in non-transmissible diseases. As chronic inflammation is consistently present in neurodegenerative diseases, it was largely assumed that RAGE could act as a critical modulator of neuroinflammation in Parkinson's disease (PD), similar to what was reported for Alzheimer's disease (AD), where RAGE is postulated to mediate pro-inflammatory signaling in microglia by binding to amyloid-β peptide. However, accumulating evidence from studies of RAGE in PD models suggests a less obvious scenario. Here, we review physiological aspects of RAGE and address the current questions about the potential involvement of this receptor in the cellular events that may be critical for the development and progression of PD, exploring possible mechanisms beyond the classical view of the microglial activation/neuroinflammation/neurodegeneration axis that is widely assumed to be the general mechanism of RAGE action in the adult brain.
      (© 2023 International Society for Neurochemistry.)
    • References:
      Abdelsalam, R. M., & Safar, M. M. (2015). Neuroprotective effects of vildagliptin in rat rotenone Parkinson‘s disease model: Role of RAGE‐NFκB and Nrf2‐antioxidant signaling pathways. Journal of Neurochemistry, 133(5), 700–707. https://doi.org/10.1111/jnc.13087.
      Abe, R., Shimizu, T., Sugawara, H., Watanabe, H., Nakamura, H., Choei, H., Sasaki, N., Yamagishi, S., Takeuchi, M., & Shimizu, H. (2004). Regulation of human melanoma growth and metastasis by AGE‐AGE receptor interactions. The Journal of Investigative Dermatology, 122(2), 461–467. https://doi.org/10.1046/j.0022‐202X.2004.22218.x.
      Arumugam, T., Ramachandran, V., Gomez, S. B., Schmidt, A. M., & Logsdon, C. D. (2012). S100P‐derived RAGE antagonistic peptide reduces tumor growth and metastasis. Clinical Cancer Research, 18(16), 4356–4364. https://doi.org/10.1158/1078‐0432.CCR‐12‐0221.
      Azar, Y. O., Badawi, G. A., Zaki, H. F., & Ibrahim, S. M. (2022). Agmatine‐mediated inhibition of NMDA receptor expression and amelioration of dyskinesia via activation of Nrf2 and suppression of HMGB1/RAGE/TLR4/MYD88/NF‐κB signaling cascade in rotenone lesioned rats. Life Sciences, 311(Pt A, 121049. https://doi.org/10.1016/j.lfs.2022.121049.
      Barocio‐Pantoja, M., Quezada‐Fernández, P., Cardona‐Müller, D., Jiménez‐Cázarez, M. B., Larios‐Cárdenas, M., González‐Radillo, O. I., García‐Sánchez, A., Carmona‐Huerta, J., Chávez‐Guzmán, A. N., Díaz‐Preciado, P. A., Balleza‐Alejandri, R., Pascoe‐González, S., & Grover‐Páez, F. (2021). Green tea extract increases soluble RAGE and improves renal function in patients with diabetic nephropathy. Journal of Medicinal Food, 24(12), 1264–1270. https://doi.org/10.1089/jmf.2020.0212.
      Blauwendraat, C., Nalls, M. A., & Singleton, A. B. (2020). The genetic architecture of Parkinson‘s disease. Lancet Neurology, 19(2), 170–178. https://doi.org/10.1016/S1474‐4422(19)30287‐X.
      Bloem, B. R., Okun, M. S., & Klein, C. (2021). Parkinson‘s disease. Lancet, 397(10291), 2284–2303. https://doi.org/10.1016/S0140‐6736(21)00218‐X.
      Bro, S., Flyvbjerg, A., Binder, C. J., Bang, C. A., Denner, L., Olgaard, K., & Nielsen, L. B. (2008). A neutralizing antibody against receptor for advanced glycation end products (RAGE) reduces atherosclerosis in uremic mice. Atherosclerosis, 201(2), 274–280. https://doi.org/10.1016/j.atherosclerosis.2008.01.015.
      Buckley, S. T., & Ehrhardt, C. (2010). The receptor for advanced glycation end products (RAGE) and the lung. Journal of Biomedicine & Biotechnology, 2010, 917108. https://doi.org/10.1155/2010/917108.
      Businaro, R., Leone, S., Fabrizi, C., Sorci, G., Donato, R., Lauro, G. M., & Fumagalli, L. (2006). S100B protects LAN‐5 neuroblastoma cells against Abeta amyloid‐induced neurotoxicity via RAGE engagement at low doses but increases Abeta amyloid neurotoxicity at high doses. Journal of Neuroscience Research, 83(5), 897–906. https://doi.org/10.1002/jnr.20785.
      Candela, P., Gosselet, F., Saint‐Pol, J., Sevin, E., Boucau, M. C., Boulanger, E., Cecchelli, R., & Fenart, L. (2010). Apical‐to‐basolateral transport of amyloid‐beta peptides through blood‐brain barrier cells is mediated by the receptor for advanced glycation end‐products and is restricted by P‐glycoprotein. Journal of Alzheimer‘s Disease, 22(3), 849–859. https://doi.org/10.3233/JAD‐2010‐100462.
      Castellani, R., Smith, M. A., Richey, P. L., & Perry, G. (1996). Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease. Brain Research, 737(1–2), 195–200. https://doi.org/10.1016/0006‐8993(96)00729‐9.
      Cervellati, C., Trentini, A., Pecorelli, A., & Valacchi, G. (2020). Inflammation in neurological disorders: The thin boundary between brain and periphery. Antioxidants & Redox Signaling, 33(3), 191–210. https://doi.org/10.1089/ars.2020.8076.
      Chavakis, T., Bierhaus, A., Al‐Fakhri, N., Schneider, D., Witte, S., Linn, T., Nagashima, M., Morser, J., Arnold, B., Preissner, K. T., & Nawroth, P. P. (2003). The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: A novel pathway for inflammatory cell recruitment. The Journal of Experimental Medicine, 198(10), 1507–1515. https://doi.org/10.1084/jem.20030800.
      Chellappa, R. C., Palanisamy, R., & Swaminathan, K. (2020). RAGE isoforms, its ligands and their role in pathophysiology of Alzheimer‘s disease. Current Alzheimer Research, 17(14), 1262–1279. https://doi.org/10.2174/1567205018666210218164246.
      Chen, C., Li, X. H., Tu, Y., Sun, H. T., Liang, H. Q., Cheng, S. X., & Zhang, S. (2014). Abeta‐AGE aggravates cognitive deficit in rats via RAGE pathway. Neuroscience, 257, 1–10. https://doi.org/10.1016/j.neuroscience.2013.10.056.
      Chen, J., Jing, J., Yu, S., Song, M., Tan, H., Cui, B., & Huang, L. (2016). Advanced glycation endproducts induce apoptosis of endothelial progenitor cells by activating receptor RAGE and NADPH oxidase/JNK signaling axis. American Journal of Translational Research, 8(5), 2169–2178.
      Chen, Y. H., Chen, Z. W., Li, H. M., Yan, X. F., & Feng, B. (2018). AGE/RAGE‐induced EMP release via the NOX‐derived ROS pathway. Journal Diabetes Research, 2018, 6823058. https://doi.org/10.1155/2018/6823058.
      Cho, H. J., Xie, C., & Cai, H. (2018). AGE‐induced neuronal cell death is enhanced in G2019S LRRK2 mutation with increased RAGE expression. Translational Neurodegeneration, 7, 1. https://doi.org/10.1186/s40035‐018‐0106‐z.
      Choi, K. M., Han, K. A., Ahn, H. J., Hwang, S. Y., Hong, H. C., Choi, H. Y., Yang, S. J., Yoo, H. J., Baik, S. H., Choi, D. S., & Min, K. W. (2012). Effects of exercise on sRAGE levels and cardiometabolic risk factors in patients with type 2 diabetes: A randomized controlled trial. The Journal of Clinical Endocrinology and Metabolism, 97(10), 3751–3758. https://doi.org/10.1210/jc.2012‐1951.
      Chou, D. K., Zhang, J., Smith, F. I., McCaffery, P., & Jungalwala, F. B. (2004). Developmental expression of receptor for advanced glycation end products (RAGE), amphoterin and sulfoglucuronyl (HNK‐1) carbohydrate in mouse cerebellum and their role in neurite outgrowth and cell migration. Journal of Neurochemistry, 90(6), 1389–1401. https://doi.org/10.1111/j.1471‐4159.2004.02609.x.
      Chuah, Y. K., Basir, R., Talib, H., Tie, T. H., & Nordin, N. (2013). Receptor for advanced glycation end products and its involvement in inflammatory diseases. International Journal of Inflammation, 2013, 403460. https://doi.org/10.1155/2013/403460.
      Coughlan, M. T., Thorburn, D. R., Penfold, S. A., Laskowski, A., Harcourt, B. E., Sourris, K. C., Tan, A. L., Fukami, K., Thallas‐Bonke, V., Nawroth, P. P., Brownlee, M., Bierhaus, A., Cooper, M. E., & Forbes, J. M. (2009). RAGE‐induced cytosolic ROS promote mitochondrial superoxide generation in diabetes. Journal of the American Society of Nephrology, 20(4), 742–752. https://doi.org/10.1681/ASN.2008050514.
      Creagh‐Brown, B. C., Quinlan, G. J., Evans, T. W., & Burke‐Gaffney, A. (2010). The RAGE axis in systemic inflammation, acute lung injury and myocardial dysfunction: An important therapeutic target? Intensive Care Medicine, 36(10), 1644–1656. https://doi.org/10.1007/s00134‐010‐1952‐z.
      Dalfo, E., Portero‐Otin, M., Ayala, V., Martinez, A., Pamplona, R., & Ferrer, I. (2005). Evidence of oxidative stress in the neocortex in incidental Lewy body disease. Journal of Neuropathology and Experimental Neurology, 64(9), 816–830. https://doi.org/10.1097/01.jnen.0000179050.54522.5a.
      Deane, R., Du Yan, S., Submamaryan, R. K., LaRue, B., Jovanovic, S., Hogg, E., Welch, D., Manness, L., Lin, C., Yu, J., Zhu, H., Ghiso, J., Frangione, B., Stern, A., Schmidt, A. M., Armstrong, D. L., Arnold, B., Liliensiek, B., Nawroth, P., … Zlokovic, B. (2003). RAGE mediates amyloid‐beta peptide transport across the blood‐brain barrier and accumulation in brain. Nature Medicine, 9(7), 907–913. https://doi.org/10.1038/nm890.
      Deane, R., Singh, I., Sagare, A. P., Bell, R. D., Ross, N. T., LaRue, B., Love, R., Perry, S., Paquette, N., Deane, R. J., Thiyagarajan, M., Zarcone, T., Fritz, G., Friedman, A. E., Miller, B. L., & Zlokovic, B. V. (2012). A multimodal RAGE‐specific inhibitor reduces amyloid beta‐mediated brain disorder in a mouse model of Alzheimer disease. The Journal of Clinical Investigation, 122(4), 1377–1392. https://doi.org/10.1172/jci58642.
      Demling, N., Ehrhardt, C., Kasper, M., Laue, M., Knels, L., & Rieber, E. P. (2006). Promotion of cell adherence and spreading: A novel function of RAGE, the highly selective differentiation marker of human alveolar epithelial type I cells. Cell and Tissue Research, 323(3), 475–488. https://doi.org/10.1007/s00441‐005‐0069‐0.
      Deng, X., Huang, W., Peng, J., Zhu, T. T., Sun, X. L., Zhou, X. Y., Yang, H., Xiong, J. F., He, H. Q., Xu, Y. H., & He, Y. Z. (2018). Irisin alleviates advanced glycation end products‐induced inflammation and endothelial dysfunction via inhibiting ROS‐NLRP3 inflammasome signaling. Inflammation, 41(1), 260–275. https://doi.org/10.1007/s10753‐017‐0685‐3.
      Ding, Q., & Keller, J. N. (2005). Evaluation of rage isoforms, ligands, and signaling in the brain. Biochimica et Biophysica Acta, 1746(1), 18–27. https://doi.org/10.1016/j.bbamcr.2005.08.006.
      Donahue, J. E., Flaherty, S. L., Johanson, C. E., Duncan, J. A., Silverberg, G. D., Miller, M. C., Tavares, R., Yang, W., Wu, Q., Sabo, E., Hovanesian, V., & Stopa, E. G. (2006). RAGE, LRP‐1, and amyloid‐beta protein in Alzheimer‘s disease. Acta Neuropathologica, 112(4), 405–415. https://doi.org/10.1007/s00401‐006‐0115‐3.
      Dulski, J., Uitti, R. J., Ross, O. A., & Wszolek, Z. K. (2022). Genetic architecture of Parkinson‘s disease subtypes—Review of the literature. Frontiers in Aging Neuroscience, 14, 1023574. https://doi.org/10.3389/fnagi.2022.1023574.
      Emanuele, E., D‘Angelo, A., Tomaino, C., Binetti, G., Ghidoni, R., Politi, P., Bernardi, L., Maletta, R., Bruni, A. C., & Geroldi, D. (2005). Circulating levels of soluble receptor for advanced glycation end products in Alzheimer disease and vascular dementia. Archives of Neurology, 62(11), 1734–1736. https://doi.org/10.1001/archneur.62.11.1734.
      Fang, F., Yu, Q., Arancio, O., Chen, D., Gore, S. S., Yan, S. S., & Yan, S. F. (2018). RAGE mediates Aβ accumulation in a mouse model of Alzheimer‘s disease via modulation of β‐ and γ‐secretase activity. Human Molecular Genetics, 27(6), 1002–1014. https://doi.org/10.1093/hmg/ddy017.
      Galasko, D., Bell, J., Mancuso, J. Y., Kupiec, J. W., Sabbagh, M. N., van Dyck, C., Thomas, R. G., Aisen, P. S., & Alzheimer‘s Disease Cooperative, S.. (2014). Clinical trial of an inhibitor of RAGE‐Abeta interactions in Alzheimer disease. Neurology, 82(17), 1536–1542. https://doi.org/10.1212/WNL.0000000000000364.
      Galloway, D. A., Phillips, A. E. M., Owen, D. R. J., & Moore, C. S. (2019). Corrigendum: Phagocytosis in the brain: Homeostasis and disease. Frontiers in Immunology, 10, 1575. https://doi.org/10.3389/fimmu.2019.01575.
      Gao, J., Teng, J., Liu, H., Han, X., Chen, B., & Xie, A. (2014). Association of RAGE gene polymorphisms with sporadic Parkinson‘s disease in Chinese Han population. Neuroscience Letters, 559, 158–162. https://doi.org/10.1016/j.neulet.2013.11.038.
      Gasiorowski, K., Brokos, B., Echeverria, V., Barreto, G. E., & Leszek, J. (2018). RAGE‐TLR crosstalk sustains chronic inflammation in neurodegeneration. Molecular Neurobiology, 55(2), 1463–1476. https://doi.org/10.1007/s12035‐017‐0419‐4.
      Gasparotto, J., Ribeiro, C. T., Bortolin, R. C., Somensi, N., Fernandes, H. S., Teixeira, A. A., Guasselli, M. O. R., Agani, C., Souza, N. C., Grings, M., Leipnitz, G., Gomes, H. M., Pasquali, M. A. D., Dunkley, P. R., Dickson, P. W., Moreira, J. C. F., & Gelain, D. P. (2017). Anti‐RAGE antibody selectively blocks acute systemic inflammatory responses to LPS in serum, liver, CSF and striatum. Brain Behavior and Immunity, 62, 124–136. https://doi.org/10.1016/j.bbi.2017.01.008.
      Gasparotto, J., Ribeiro, C. T., Bortolin, R. C., Somensi, N., Rabelo, T. K., Kunzler, A., Souza, N. C., Pasquali, M. A. B., Moreira, J. C. F., & Gelain, D. P. (2017). Targeted inhibition of RAGE in substantia nigra of rats blocks 6‐OHDA‐induced dopaminergic denervation. Scientific Reports, 7(1), 8795. https://doi.org/10.1038/s41598‐017‐09257‐3.
      Gasparotto, J., Ribeiro, C. T., da Rosa‐Silva, H. T., Bortolin, R. C., Rabelo, T. K., Peixoto, D. O., Moreira, J. C. F., & Gelain, D. P. (2019). Systemic inflammation changes the site of RAGE expression from endothelial cells to neurons in different brain areas. Molecular Neurobiology, 56(5), 3079–3089. https://doi.org/10.1007/s12035‐018‐1291‐6.
      Gomez, A., & Ferrer, I. (2010). Involvement of the cerebral cortex in Parkinson disease linked with G2019S LRRK2 mutation without cognitive impairment. Acta Neuropathologica, 120(2), 155–167. https://doi.org/10.1007/s00401‐010‐0669‐y.
      Guo, W. A., Knight, P. R., & Raghavendran, K. (2012). The receptor for advanced glycation end products and acute lung injury/acute respiratory distress syndrome. Intensive Care Medicine, 38(10), 1588–1598. https://doi.org/10.1007/s00134‐012‐2624‐y.
      Guo, Z. J., Niu, H. X., Hou, F. F., Zhang, L., Fu, N., Nagai, R., Lu, X., Chen, B. H., Shan, Y. X., Tian, J. W., Nagaraj, R. H., Xie, D., & Zhang, X. (2008). Advanced oxidation protein products activate vascular endothelial cells via a RAGE‐mediated signaling pathway. Antioxidants & Redox Signaling, 10(10), 1699–1712. https://doi.org/10.1089/ars.2007.1999.
      Hori, O., Brett, J., Slattery, T., Cao, R., Zhang, J., Chen, J. X., Nagashima, M., Lundh, E. R., Vijay, S., Nitecki, D., Morser, J., Stern, D., & Schmidt, A. M. (1995). The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co‐expression of rage and amphoterin in the developing nervous system. The Journal of Biological Chemistry, 270(43), 25752–25761.
      Huang, M., Guo, M., Wang, K., Wu, K., Li, Y., Tian, T., Wang, Y., Yan, W., Zhou, Z., & Yang, H. (2020). HMGB1 mediates paraquat‐induced neuroinflammatory responses via activating RAGE signaling pathway. Neurotoxicity Research, 37(4), 913–925. https://doi.org/10.1007/s12640‐019‐00148‐1.
      Hudson, B. I., Kalea, A. Z., Del Mar Arriero, M., Harja, E., Boulanger, E., D‘Agati, V., & Schmidt, A. M. (2008). Interaction of the RAGE cytoplasmic domain with diaphanous‐1 is required for ligand‐stimulated cellular migration through activation of Rac1 and Cdc42. The Journal of Biological Chemistry, 283(49), 34457–34468. https://doi.org/10.1074/jbc.M801465200.
      Huttunen, H. J., Fages, C., & Rauvala, H. (1999). Receptor for advanced glycation end products (RAGE)‐mediated neurite outgrowth and activation of NF‐kappaB require the cytoplasmic domain of the receptor but different downstream signaling pathways. The Journal of Biological Chemistry, 274(28), 19919–19924.
      Huttunen, H. J., Kuja‐Panula, J., Sorci, G., Agneletti, A. L., Donato, R., & Rauvala, H. (2000). Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. The Journal of Biological Chemistry, 275(51), 40096–40105. https://doi.org/10.1074/jbc.M006993200.
      Iłzecka, J. (2009). Serum‐soluble receptor for advanced glycation end product levels in patients with amyotrophic lateral sclerosis. Acta Neurologica Scandinavica, 120(2), 119–122. https://doi.org/10.1111/j.1600‐0404.2008.01133.x.
      Jia, C., Zhang, J., Chen, H., Zhuge, Y., Chen, H., Qian, F., Zhou, K., Niu, C., Wang, F., Qiu, H., Wang, Z., Xiao, J., Rong, X., & Chu, M. (2019). Endothelial cell pyroptosis plays an important role in Kawasaki disease via HMGB1/RAGE/cathespin B signaling pathway and NLRP3 inflammasome activation. Cell Death & Disease, 10(10), 778. https://doi.org/10.1038/s41419‐019‐2021‐3.
      Jiang, X., Wang, X., Tuo, M., Ma, J., & Xie, A. (2018). RAGE and its emerging role in the pathogenesis of Parkinson‘s disease. Neuroscience Letters, 672, 65–69. https://doi.org/10.1016/j.neulet.2018.02.049.
      Jules, J., Maiguel, D., & Hudson, B. I. (2013). Alternative splicing of the RAGE cytoplasmic domain regulates cell signaling and function. PLoS One, 8(11), e78267. https://doi.org/10.1371/journal.pone.0078267.
      Juranek, J. K., Daffu, G. K., Geddis, M. S., Li, H., Rosario, R., Kaplan, B. J., Kelly, L., & Schmidt, A. M. (2016). Soluble RAGE treatment delays progression of amyotrophic lateral sclerosis in SOD1 mice. Frontiers in Cellular Neuroscience, 10, 117. https://doi.org/10.3389/fncel.2016.00117.
      Juranek, J. K., Geddis, M. S., Song, F., Zhang, J., Garcia, J., Rosario, R., Yan, S. F., Brannagan, T. H., & Schmidt, A. M. (2013). RAGE deficiency improves postinjury sciatic nerve regeneration in type 1 diabetic mice. Diabetes, 62(3), 931–943. https://doi.org/10.2337/db12‐0632.
      K, M., & MF, C. (2012). Animal models of the non‐motor features of Parkinson‘s disease. Neurobiology of Disease, 46(3), 597–606. https://doi.org/10.1016/j.nbd.2011.12.040.
      Kalea, A. Z., Schmidt, A. M., & Hudson, B. I. (2009). RAGE: A novel biological and genetic marker for vascular disease. Clinical Science (London, England), 116(8), 621–637. https://doi.org/10.1042/CS20080494.
      Kierdorf, K., & Fritz, G. (2013). RAGE regulation and signaling in inflammation and beyond. Journal of Leukocyte Biology, 94(1), 55–68. https://doi.org/10.1189/jlb.1012519.
      Kim, J., Wan, C. K., O‘Carroll, S. J., Shaikh, S. B., & Nicholson, L. F. (2012). The role of receptor for advanced glycation end products (RAGE) in neuronal differentiation. Journal of Neuroscience Research, 90(6), 1136–1147. https://doi.org/10.1002/jnr.23014.
      Kim, S. J., Ryu, M. J., Han, J., Jang, Y., Lee, M. J., Ju, X., Ryu, I., Lee, Y. L., Oh, E., Chung, W., Heo, J. Y., & Kweon, G. R. (2019). Non‐cell autonomous modulation of tyrosine hydroxylase by HMGB1 released from astrocytes in an acute MPTP‐induced parkinsonian mouse model. Laboratory Investigation, 99(9), 1389–1399. https://doi.org/10.1038/s41374‐019‐0254‐5.
      Kinscherf, N. A., & Pehar, M. (2022). Role and therapeutic potential of RAGE signaling in neurodegeneration. Current Drug Targets, 23(12), 1191–1209. https://doi.org/10.2174/1389450123666220610171005.
      Kokkola, R., Li, J., Sundberg, E., Aveberger, A. C., Palmblad, K., Yang, H., Tracey, K. J., Andersson, U., & Harris, H. E. (2003). Successful treatment of collagen‐induced arthritis in mice and rats by targeting extracellular high mobility group box chromosomal protein 1 activity. Arthritis and Rheumatism, 48(7), 2052–2058. https://doi.org/10.1002/art.11161.
      Kook, S. Y., Hong, H. S., Moon, M., Ha, C. M., Chang, S., & Mook‐Jung, I. (2012). Aβ₁₋₄₂‐RAGE interaction disrupts tight junctions of the blood‐brain barrier via Ca2+‐calcineurin signaling. The Journal of Neuroscience, 32(26), 8845–8854. https://doi.org/10.1523/JNEUROSCI.6102‐11.2012.
      Lander, H. M., Tauras, J. M., Ogiste, J. S., Hori, O., Moss, R. A., & Schmidt, A. M. (1997). Activation of the receptor for advanced glycation end products triggers a p21(ras)‐dependent mitogen‐activated protein kinase pathway regulated by oxidant stress. The Journal of Biological Chemistry, 272(28), 17810–17814. https://doi.org/10.1074/jbc.272.28.17810.
      Lee, J., Bayarsaikhan, D., Arivazhagan, R., Park, H., Lim, B., Gwak, P., Jeong, G. B., Lee, J., Byun, K., & Lee, B. (2019). CRISPR/Cas9 edited sRAGE‐MSCs protect neuronal death in Parkinsons disease model. International Journal of Stem Cells, 12(1), 114–124. https://doi.org/10.15283/ijsc18110.
      Li, X. H., Lv, B. L., Xie, J. Z., Liu, J., Zhou, X. W., & Wang, J. Z. (2012). AGEs induce Alzheimer‐like tau pathology and memory deficit via RAGE‐mediated GSK‐3 activation. Neurobiology of Aging, 33(7), 1400–1410. https://doi.org/10.1016/j.neurobiolaging.2011.02.003.
      Liang, F., Jia, J., Wang, S., Qin, W., & Liu, G. (2013). Decreased plasma levels of soluble low density lipoprotein receptor‐related protein‐1 (sLRP) and the soluble form of the receptor for advanced glycation end products (sRAGE) in the clinical diagnosis of Alzheimer‘s disease. Journal of Clinical Neuroscience, 20(3), 357–361. https://doi.org/10.1016/j.jocn.2012.06.005.
      Lin, H. J., Jiang, Z. P., Lo, H. R., Feng, C. L., Chen, C. J., Yang, C. Y., Huang, M. Z., Wu, H. Y., Chen, Y. A., Chen, Y., Chiu, C. H., & Lai, C. H. (2019). Coalescence of RAGE in lipid rafts in response to Cytolethal distending toxin‐induced inflammation. Frontiers in Immunology, 10, 109. https://doi.org/10.3389/fimmu.2019.00109.
      Liu, Y., Shen, W., Chen, Q., Cao, Q., Di, W., Lan, R., Chen, Z., Bai, J., Han, Z., & Xu, W. (2020). Inhibition of RAGE by FPS‐ZM1 alleviates renal injury in spontaneously hypertensive rats. European Journal of Pharmacology, 882, 173228. https://doi.org/10.1016/j.ejphar.2020.173228.
      Lohwasser, C., Neureiter, D., Weigle, B., Kirchner, T., & Schuppan, D. (2006). The receptor for advanced glycation end products is highly expressed in the skin and upregulated by advanced glycation end products and tumor necrosis factor‐alpha. The Journal of Investigative Dermatology, 126(2), 291–299. https://doi.org/10.1038/sj.jid.5700070.
      Long, H., Zhang, S., Zeng, S., Tong, Y., Liu, J., Liu, C., & Li, D. (2022). Interaction of RAGE with alpha‐synuclein fibrils mediates inflammatory response of microglia. Cell Reports, 40(12), 111401. https://doi.org/10.1016/j.celrep.2022.111401.
      Lopez‐Diez, R., Rastrojo, A., Villate, O., & Aguado, B. (2013). Complex tissue‐specific patterns and distribution of multiple RAGE splice variants in different mammals. Genome Biology and Evolution, 5(12), 2420–2435. https://doi.org/10.1093/gbe/evt188.
      Lutterloh, E. C., Opal, S. M., Pittman, D. D., Keith, J. C., Jr., Tan, X. Y., Clancy, B. M., Palmer, H., Milarski, K., Sun, Y., Palardy, J. E., Parejo, N. A., & Kessimian, N. (2007). Inhibition of the RAGE products increases survival in experimental models of severe sepsis and systemic infection. Critical Care, 11(6), R122. https://doi.org/10.1186/cc6184.
      MacLean, M., Derk, J., Ruiz, H. H., Juranek, J. K., Ramasamy, R., & Schmidt, A. M. (2019). The receptor for advanced glycation end products (RAGE) and DIAPH1: Implications for vascular and neuroinflammatory dysfunction in disorders of the central nervous system. Neurochemistry International, 126, 154–164. https://doi.org/10.1016/j.neuint.2019.03.012.
      Mahlknecht, P., Peball, M., Mair, K., Werkmann, M., Nocker, M., Wolf, E., Eisner, W., Bajaj, S., Quirbach, S., Peralta, C., Eschlbock, S., Wenning, G. K., Willeit, P., Seppi, K., & Poewe, W. (2020). Has deep brain stimulation changed the very Long‐term outcome of Parkinson‘s disease? A controlled longitudinal study. Movement Disorders Clinical Practice, 7(7), 782–787. https://doi.org/10.1002/mdc3.13039.
      Manzanza, N. O., Sedlackova, L., & Kalaria, R. N. (2021). Alpha‐synuclein post‐translational modifications: Implications for pathogenesis of Lewy body disorders. Frontiers in Aging Neuroscience, 13, 690293. https://doi.org/10.3389/fnagi.2021.690293.
      Marogianni, C., Sokratous, M., Dardiotis, E., Hadjigeorgiou, G. M., Bogdanos, D., & Xiromerisiou, G. (2020). Neurodegeneration and inflammation‐an interesting interplay in Parkinson‘s disease. International Journal of Molecular Sciences, 21(22), 8421. https://doi.org/10.3390/ijms21228421.
      Meneghini, V., Bortolotto, V., Francese, M. T., Dellarole, A., Carraro, L., Terzieva, S., & Grilli, M. (2013). High‐mobility group box‐1 protein and beta‐amyloid oligomers promote neuronal differentiation of adult hippocampal neural progenitors via receptor for advanced glycation end products/nuclear factor‐kappaB axis: Relevance for Alzheimer‘s disease. The Journal of Neuroscience, 33(14), 6047–6059. https://doi.org/10.1523/JNEUROSCI.2052‐12.2013.
      Meneghini, V., Francese, M. T., Carraro, L., & Grilli, M. (2010). A novel role for the receptor for advanced glycation end‐products in neural progenitor cells derived from adult SubVentricular zone. Molecular and Cellular Neurosciences, 45(2), 139–150. https://doi.org/10.1016/j.mcn.2010.06.005.
      Munch, G., Luth, H. J., Wong, A., Arendt, T., Hirsch, E., Ravid, R., & Riederer, P. (2000). Crosslinking of alpha‐synuclein by advanced glycation endproducts—an early pathophysiological step in Lewy body formation? Journal of Chemical Neuroanatomy, 20(3–4), 253–257. https://doi.org/10.1016/s0891‐0618(00)00096‐x.
      Neeper, M., Schmidt, A. M., Brett, J., Yan, S. D., Wang, F., Pan, Y. C., Elliston, K., Stern, D., & Shaw, A. (1992). Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. The Journal of Biological Chemistry, 267(21), 14998–15004.
      Pickering, R. J., Tikellis, C., Rosado, C. J., Tsorotes, D., Dimitropoulos, A., Smith, M., Huet, O., Seeber, R. M., Abhayawardana, R., Johnstone, E. K., Golledge, J., Wang, Y., Jandeleit‐Dahm, K. A., Cooper, M. E., Pfleger, K. D., & Thomas, M. C. (2019). Transactivation of RAGE mediates angiotensin‐induced inflammation and atherogenesis. The Journal of Clinical Investigation, 129(1), 406–421. https://doi.org/10.1172/JCI99987.
      Piras, S., Furfaro, A. L., Domenicotti, C., Traverso, N., Marinari, U. M., Pronzato, M. A., & Nitti, M. (2016). RAGE expression and ROS generation in neurons: Differentiation versus damage. Oxidative Medicine and Cellular Longevity, 2016, 1–9.
      Piras, S., Furfaro, A. L., Domenicotti, C., Traverso, N., Marinari, U. M., Pronzato, M. A., & Nitti, M. (2014). Monomeric Abeta1‐42 and RAGE: Key players in neuronal differentiation. Neurobiology of Aging, 35(6), 1301–1308. https://doi.org/10.1016/j.neurobiolaging.2014.01.002.
      Poewe, W., & Espay, A. J. (2020). Long duration response in Parkinson‘s disease: Levodopa revisited. Brain, 143(8), 2332–2335. https://doi.org/10.1093/brain/awaa226.
      Poewe, W., Seppi, K., Tanner, C. M., Halliday, G. M., Brundin, P., Volkmann, J., Schrag, A. E., & Lang, A. E. (2017). Parkinson disease. Nature Reviews Disease Primers, 3, 17013. https://doi.org/10.1038/nrdp.2017.13.
      Porat, A., Giat, E., Kowal, C., He, M., Son, M., Latz, E., Ben‐Zvi, I., Al‐Abed, Y., & Diamond, B. (2018). DNA‐mediated interferon signature induction by SLE serum occurs in monocytes through two pathways: A mechanism to inhibit both pathways. Frontiers in Immunology, 9, 2824. https://doi.org/10.3389/fimmu.2018.02824.
      Prantner, D., Nallar, S., & Vogel, S. N. (2020). The role of RAGE in host pathology and crosstalk between RAGE and TLR4 in innate immune signal transduction pathways. The FASEB Journal, 34(12), 15659–15674. https://doi.org/10.1096/fj.202002136R.
      Qin, L., Liu, Y., Hong, J. S., & Crews, F. T. (2013). NADPH oxidase and aging drive microglial activation, oxidative stress, and dopaminergic neurodegeneration following systemic LPS administration. Glia, 61(6), 855–868. https://doi.org/10.1002/glia.22479.
      Qin, L., Wu, X., Block, M. L., Liu, Y., Breese, G. R., Hong, J. S., Knapp, D. J., & Crews, F. T. (2007). Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia, 55(5), 453–462. https://doi.org/10.1002/glia.20467.
      Ramasamy, R., Vannucci, S. J., Yan, S. S., Herold, K., Yan, S. F., & Schmidt, A. M. (2005). Advanced glycation end products and RAGE: A common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology, 15(7), 16R–28R. https://doi.org/10.1093/glycob/cwi053.
      Raucci, A., Cugusi, S., Antonelli, A., Barabino, S. M., Monti, L., Bierhaus, A., Reiss, K., Saftig, P., & Bianchi, M. E. (2008). A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane‐bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). The FASEB Journal, 22(10), 3716–3727. https://doi.org/10.1096/fj.08‐109033.
      Ray, R., Juranek, J. K., & Rai, V. (2016). RAGE axis in neuroinflammation, neurodegeneration and its emerging role in the pathogenesis of amyotrophic lateral sclerosis. Neuroscience and Biobehavioral Reviews, 62, 48–55. https://doi.org/10.1016/j.neubiorev.2015.12.006.
      Reali, C., Scintu, F., Pillai, R., Donato, R., Michetti, F., & Sogos, V. (2005). S100b counteracts effects of the neurotoxicant trimethyltin on astrocytes and microglia. Journal of Neuroscience Research, 81(5), 677–686. https://doi.org/10.1002/jnr.20584.
      Rong, L. L., Yan, S. F., Wendt, T., Hans, D., Pachydaki, S., Bucciarelli, L. G., Adebayo, A., Qu, W., Lu, Y., Kostov, K., Lalla, E., Yan, S. D., Gooch, C., Szabolcs, M., Trojaborg, W., Hays, A. P., & Schmidt, A. M. (2004). RAGE modulates peripheral nerve regeneration via recruitment of both inflammatory and axonal outgrowth pathways. The FASEB Journal, 18(15), 1818–1825. https://doi.org/10.1096/fj.04‐1900com.
      Rouhiainen, A., Kuja‐Panula, J., Tumova, S., & Rauvala, H. (2013). RAGE‐mediated cell signaling. Methods in Molecular Biology, 963, 239–263. https://doi.org/10.1007/978‐1‐62703‐230‐8_15.
      Sakaguchi, M., Murata, H., Yamamoto, K., Ono, T., Sakaguchi, Y., Motoyama, A., Hibino, T., Kataoka, K., & Huh, N. H. (2011). TIRAP, an adaptor protein for TLR2/4, transduces a signal from RAGE phosphorylated upon ligand binding. PLoS One, 6(8), e23132. https://doi.org/10.1371/journal.pone.0023132.
      Sakurai, S., Yonekura, H., Yamamoto, Y., Watanabe, T., Tanaka, N., Li, H., Rahman, A. K., Myint, K. M., Kim, C. H., & Yamamoto, H. (2003). The AGE‐RAGE system and diabetic nephropathy. Journal of the American Society of Nephrology, 14(8 Suppl 3), S259–S263. https://doi.org/10.1097/01.asn.0000077414.59717.74.
      Saleh, A., Smith, D. R., Tessler, L., Mateo, A. R., Martens, C., Schartner, E., Van der Ploeg, R., Toth, C., Zochodne, D. W., & Fernyhough, P. (2013). Receptor for advanced glycation end‐products (RAGE) activates divergent signaling pathways to augment neurite outgrowth of adult sensory neurons. Experimental Neurology, 249, 149–159. https://doi.org/10.1016/j.expneurol.2013.08.018.
      Santoro, M., Maetzler, W., Stathakos, P., Martin, H. L., Hobert, M. A., Rattay, T. W., Gasser, T., Forrester, J. V., Berg, D., Tracey, K. J., Riedel, G., & Teismann, P. (2016). In‐vivo evidence that high mobility group box 1 exerts deleterious effects in the 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine model and Parkinson‘s disease which can be attenuated by glycyrrhizin. Neurobiology of Disease, 91, 59–68.
      Sathe, K., Maetzler, W., Lang, J. D., Mounsey, R. B., Fleckenstein, C., Martin, H. L., Schulte, C., Mustafa, S., Synofzik, M., Vukovic, Z., Itohara, S., Berg, D., & Teismann, P. (2012). S100B is increased in Parkinson‘s disease and ablation protects against MPTP‐induced toxicity through the RAGE and TNF‐alpha pathway. Brain, 135(Pt 11), 3336–3347. https://doi.org/10.1093/brain/aws250.
      Sawa, H., Ueda, T., Takeyama, Y., Yasuda, T., Shinzeki, M., Nakajima, T., & Kuroda, Y. (2006). Blockade of high mobility group box‐1 protein attenuates experimental severe acute pancreatitis. World Journal of Gastroenterology, 12(47), 7666–7670. https://doi.org/10.3748/wjg.v12.i47.7666.
      Sbai, O., Devi, T. S., Melone, M. A., Feron, F., Khrestchatisky, M., Singh, L. P., & Perrone, L. (2010). RAGE‐TXNIP axis is required for S100B‐promoted Schwann cell migration, fibronectin expression and cytokine secretion. Journal of Cell Science, 123(Pt 24), 4332–4339. https://doi.org/10.1242/jcs.074674.
      Schmidt, A. M., Vianna, M., Gerlach, M., Brett, J., Ryan, J., Kao, J., Esposito, C., Hegarty, H., Hurley, W., & Clauss, M. (1992). Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. The Journal of Biological Chemistry, 267(21), 14987–14997.
      Sessa, L., Gatti, E., Zeni, F., Antonelli, A., Catucci, A., Koch, M., Pompilio, G., Fritz, G., Raucci, A., & Bianchi, M. E. (2014). The receptor for advanced glycation end‐products (RAGE) is only present in mammals, and belongs to a family of cell adhesion molecules (CAMs). PLoS One, 9(1), e86903. https://doi.org/10.1371/journal.pone.0086903.
      Shadrina, M. I., & Slominsky, P. A. (2023). Genetic architecture of Parkinson‘s disease. Biochemistry (Mosc), 88(3), 417–433. https://doi.org/10.1134/S0006297923030100.
      Shen, L., Zhang, T., Yang, Y., Lu, D., Xu, A., & Li, K. (2021). FPS‐ZM1 alleviates neuroinflammation in focal cerebral ischemia rats via blocking ligand/RAGE/DIAPH1 pathway. ACS Chemical Neuroscience, 12(1), 63–78. https://doi.org/10.1021/acschemneuro.0c00530.
      Sherer, T. B., Betarbet, R., Testa, C. M., Seo, B. B., Richardson, J. R., Kim, J. H., Miller, G. W., Yagi, T., Matsuno‐Yagi, A., & Greenamyre, J. T. (2003). Mechanism of toxicity in rotenone models of Parkinson‘s disease. The Journal of Neuroscience, 23(34), 10756–10764. https://doi.org/10.1523/JNEUROSCI.23‐34‐10756.2003.
      Sims, G. P., Rowe, D. C., Rietdijk, S. T., Herbst, R., & Coyle, A. J. (2010). HMGB1 and RAGE in inflammation and cancer. Annual Review of Immunology, 28, 367–388. https://doi.org/10.1146/annurev.immunol.021908.132603.
      Somensi, N., Brum, P. O., de Miranda Ramos, V., Gasparotto, J., Zanotto‐Filho, A., Rostirolla, D. C., da Silva Morrone, M., Moreira, J. C. F., & Gelain, D. P. (2017). Extracellular HSP70 activates ERK1/2, NF‐kB and pro‐inflammatory gene transcription through binding with RAGE in A549 human lung cancer cells. Cellular Physiology and Biochemistry, 42(6), 2507–2522. https://doi.org/10.1159/000480213.
      Son, M., Oh, S., Park, H., Ahn, H., Choi, J., Kim, H., Lee, H. S., Lee, S., Park, H. J., Kim, S. U., Lee, B., & Byun, K. (2017). Protection against RAGE‐mediated neuronal cell death by sRAGE‐secreting human mesenchymal stem cells in 5xFAD transgenic mouse model. Brain, Behavior, and Immunity, 66, 347–358. https://doi.org/10.1016/j.bbi.2017.07.158.
      Spillantini, M. G., Schmidt, M. L., Lee, V. M., Trojanowski, J. Q., Jakes, R., & Goedert, M. (1997). Alpha‐synuclein in Lewy bodies. Nature, 388(6645), 839–840. https://doi.org/10.1038/42166.
      Sterenczak, K. A., Willenbrock, S., Barann, M., Klemke, M., Soller, J. T., Eberle, N., Nolte, I., Bullerdiek, J., & Murua Escobar, H. (2009). Cloning, characterisation, and comparative quantitative expression analyses of receptor for advanced glycation end products (RAGE) transcript forms. Gene, 434(1–2), 35–42. https://doi.org/10.1016/j.gene.2008.10.027.
      Sternberg, Z., Weinstock‐Guttman, B., Hojnacki, D., Zamboni, P., Zivadinov, R., Chadha, K., Lieberman, A., Kazim, L., Drake, A., Rocco, P., Grazioli, E., & Munschauer, F. (2008). Soluble receptor for advanced glycation end products in multiple sclerosis: A potential marker of disease severity. Multiple Sclerosis, 14(6), 759–763. https://doi.org/10.1177/1352458507088105.
      Takuma, K., Fang, F., Zhang, W., Yan, S., Fukuzaki, E., Du, H., Sosunov, A., McKhann, G., Funatsu, Y., Nakamichi, N., Nagai, T., Mizoguchi, H., Ibi, D., Hori, O., Ogawa, S., Stern, D. M., Yamada, K., & Yan, S. S. (2009). RAGE‐mediated signaling contributes to intraneuronal transport of amyloid‐beta and neuronal dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 106(47), 20021–20026. https://doi.org/10.1073/pnas.0905686106.
      Tarafdar, A., & Pula, G. (2018). The role of NADPH oxidases and oxidative stress in neurodegenerative disorders. International Journal of Molecular Sciences, 19(12), 3824. https://doi.org/10.3390/ijms19123824.
      Teismann, P., Sathe, K., Bierhaus, A., Leng, L., Martin, H. L., Bucala, R., Weigle, B., Nawroth, P. P., & Schulz, J. B. (2012). Receptor for advanced glycation endproducts (RAGE) deficiency protects against MPTP toxicity. Neurobiology of Aging, 33(10), 2478–2490. https://doi.org/10.1016/j.neurobiolaging.2011.12.006.
      Tiefensee Ribeiro, C., Peixoto, D. O., Santos, L., Saibro‐Girardi, C., Brum, P. O., Carazza‐Kessler, F. G., Somensi, N., Behrens, L. M. P., Bittencourt, R. R., Soares, L. S., Silveira, A. K., de Oliveira, J., Moreira, J. C. F., Gasparotto, J., & Gelain, D. P. (2021). Intranasal HSP70 administration protects against dopaminergic denervation and modulates neuroinflammatory response in the 6‐OHDA rat model. Brain, Behavior, & Immunity—Health, 14, 100253. https://doi.org/10.1016/j.bbih.2021.100253.
      Tieu, K. (2011). A guide to neurotoxic animal models of Parkinson‘s disease. Cold Spring Harbor Perspectives in Medicine, 1(1), a009316. https://doi.org/10.1101/cshperspect.a009316.
      Viana, S. D., Fernandes, R. C., Canas, P. M., Silva, A. M., Carvalho, F., Ali, S. F., Fontes Ribeiro, C. A., & Pereira, F. C. (2016). Presymptomatic MPTP mice show neurotrophic S100B/mRAGE striatal levels. CNS Neuroscience & Therapeutics, 22(5), 396–403. https://doi.org/10.1111/cns.12508.
      Viana, S. D., Valero, J., Rodrigues‐Santos, P., Couceiro, P., Silva, A. M., Carvalho, F., Ali, S. F., Fontes‐Ribeiro, C. A., & Pereira, F. C. (2016). Regulation of striatal astrocytic receptor for advanced glycation end‐products variants in an early stage of experimental Parkinson‘s disease. Journal of Neurochemistry, 138(4), 598–609. https://doi.org/10.1111/jnc.13682.
      Vicente Miranda, H., & Outeiro, T. F. (2010). The sour side of neurodegenerative disorders: The effects of protein glycation. The Journal of Pathology, 221(1), 13–25. https://doi.org/10.1002/path.2682.
      Villarreal, A., Aviles Reyes, R. X., Angelo, M. F., Reines, A. G., & Ramos, A. J. (2011). S100B alters neuronal survival and dendrite extension via RAGE‐mediated NF‐kappaB signaling. Journal of Neurochemistry, 117(2), 321–332. https://doi.org/10.1111/j.1471‐4159.2011.07207.x.
      Wang, G., Jin, S., Huang, W., Li, Y., Wang, J., Ling, X., Huang, Y., Hu, Y., Li, C., Meng, Y., & Li, X. (2021). LPS‐induced macrophage HMGB1‐loaded extracellular vesicles trigger hepatocyte pyroptosis by activating the NLRP3 inflammasome. Cell Death Discovery, 7(1), 337. https://doi.org/10.1038/s41420‐021‐00729‐0.
      Wang, J., Li, R., Peng, Z., Hu, B., Rao, X., & Li, J. (2020). HMGB1 participates in LPS‐induced acute lung injury by activating the AIM2 inflammasome in macrophages and inducing polarization of M1 macrophages via TLR2, TLR4, and RAGE/NF‐kappaB signaling pathways. International Journal of Molecular Medicine, 45(1), 61–80. https://doi.org/10.3892/ijmm.2019.4402.
      Wang, L., Li, S., & Jungalwala, F. B. (2008). Receptor for advanced glycation end products (RAGE) mediates neuronal differentiation and neurite outgrowth. Journal of Neuroscience Research, 86(6), 1254–1266. https://doi.org/10.1002/jnr.21578.
      Wang, X., Sun, X., Niu, M., Zhang, X., Wang, J., Zhou, C., & Xie, A. (2020). RAGE silencing ameliorates neuroinflammation by inhibition of p38‐NF‐κB signaling pathway in mouse model of Parkinson‘s disease. Frontiers in Neuroscience, 14, 353. https://doi.org/10.3389/fnins.2020.00353.
      Wautier, M. P., Chappey, O., Corda, S., Stern, D. M., Schmidt, A. M., & Wautier, J. L. (2001). Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. American Journal of Physiology. Endocrinology and Metabolism, 280(5), E685–E694. https://doi.org/10.1152/ajpendo.2001.280.5.E685.
      Xie, J., Mendez, J. D., Mendez‐Valenzuela, V., & Aguilar‐Hernandez, M. M. (2013). Cellular signalling of the receptor for advanced glycation end products (RAGE). Cellular Signalling, 25(11), 2185–2197. https://doi.org/10.1016/j.cellsig.2013.06.013.
      Xu, X., Zhu, H., Wang, T., Sun, Y., Ni, P., Liu, Y., Tian, S., Amoah Barnie, P., Shen, H., Xu, W., Xu, H., & Su, Z. (2014). Exogenous high‐mobility group box 1 inhibits apoptosis and promotes the proliferation of Lewis cells via RAGE/TLR4‐dependent signal pathways. Scandinavian Journal of Immunology, 79(6), 386–394. https://doi.org/10.1111/sji.12174.
      Xu, Y., Toure, F., Qu, W., Lin, L., Song, F., Shen, X., Rosario, R., Garcia, J., Schmidt, A. M., & Yan, S. F. (2010). Advanced glycation end product (AGE)‐receptor for AGE (RAGE) signaling and up‐regulation of Egr‐1 in hypoxic macrophages. The Journal of Biological Chemistry, 285(30), 23233–23240. https://doi.org/10.1074/jbc.M110.117457.
      Yamamoto, Y., Liang, M., Munesue, S., Deguchi, K., Harashima, A., Furuhara, K., Yuhi, T., Zhong, J., Akther, S., Goto, H., Eguchi, Y., Kitao, Y., Hori, O., Shiraishi, Y., Ozaki, N., Shimizu, Y., Kamide, T., Yoshikawa, A., Hayashi, Y., … Higashida, H. (2019). Vascular RAGE transports oxytocin into the brain to elicit its maternal bonding behaviour in mice. Communications Biology, 2, 76. https://doi.org/10.1038/s42003‐019‐0325‐6.
      Yan, S. D., Bierhaus, A., Nawroth, P. P., & Stern, D. M. (2009). RAGE and Alzheimer‘s disease: A progression factor for amyloid‐beta‐induced cellular perturbation? Journal of Alzheimer‘s Disease, 16(4), 833–843. https://doi.org/10.3233/JAD‐2009‐1030.
      Yang, H., Liu, H., Zeng, Q., Imperato, G. H., Addorisio, M. E., Li, J., … Tracey, K. J. (2019). Inhibition of HMGB1/RAGE‐mediated endocytosis by HMGB1 antagonist box a, anti‐HMGB1 antibodies, and cholinergic agonists suppresses inflammation. Molecular Medicine, 25(1), 13. https://doi.org/10.1186/s10020‐019‐0081‐6.
      Yang, H., Ochani, M., Li, J., Qiang, X., Tanovic, M., Harris, H. E., Susarla, S. M., Ulloa, L., Wang, H., DiRaimo, R., Czura, C. J., Roth, J., Warren, H. S., Fink, M. P., Fenton, M. J., Andersson, U., & Tracey, K. J. (2004). Reversing established sepsis with antagonists of endogenous high‐mobility group box 1. Proceedings of the National Academy of Sciences of the United States of America, 101(1), 296–301. https://doi.org/10.1073/pnas.2434651100.
      Yonekura, H., Yamamoto, Y., Sakurai, S., Petrova, R. G., Abedin, M. J., Li, H., Yasui, K., Takeuchi, M., Makita, Z., Takasawa, S., Okamoto, H., Watanabe, T., & Yamamoto, H. (2003). Novel splice variants of the receptor for advanced glycation end‐products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes‐induced vascular injury. The Biochemical Journal, 370(Pt 3), 1097–1109. https://doi.org/10.1042/BJ20021371.
      Zhang, D. Q., Wang, R., Li, T., Zhou, J. P., Chang, G. Q., Zhao, N., Yang, L. N., Zhai, H., & Yang, L. (2016). Reduced soluble RAGE is associated with disease severity of axonal Guillain‐Barré syndrome. Scientific Reports, 6, 21890. https://doi.org/10.1038/srep21890.
      Zhou, R., Chen, L. L., Yang, H., Li, L., Liu, J., Chen, L., Hong, W. J., Wang, C. G., Ma, J. J., Huang, J., Zhou, X. F., Liu, D., & Zhou, H. D. (2021). Effect of high cholesterol regulation of LRP1 and RAGE on Aβ transport across the blood‐brain barrier in Alzheimer‘s disease. Current Alzheimer Research, 18(5), 428–442. https://doi.org/10.2174/1567205018666210906092940.
      Zong, H., Madden, A., Ward, M., Mooney, M. H., Elliott, C. T., & Stitt, A. W. (2010). Homodimerization is essential for the receptor for advanced glycation end products (RAGE)‐mediated signal transduction. The Journal of Biological Chemistry, 285(30), 23137–23146. https://doi.org/10.1074/jbc.M110.133827.
    • Grant Information:
      88881.512990/2020-01 Alexander von Humboldt-Stiftung; 301175/2019-5 Conselho Nacional de Desenvolvimento Científico e Tecnológico; 408435/2018-6 Conselho Nacional de Desenvolvimento Científico e Tecnológico; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; EXC 2067/1- 390729940 Deutsche Forschungsgemeinschaft; SFB1286 (B8) Deutsche Forschungsgemeinschaft; 16/2551-0000499-4 Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul; 21/2551-0000073-2 Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul
    • Contributed Indexing:
      Keywords: Parkinson's disease; RAGE; dopaminergic neurodegeneration; neuroinflammation; α‐Synuclein
    • Accession Number:
      0 (Receptor for Advanced Glycation End Products)
    • Publication Date:
      Date Created: 20230628 Date Completed: 20240730 Latest Revision: 20240730
    • Publication Date:
      20240730
    • Accession Number:
      10.1111/jnc.15890
    • Accession Number:
      37381043