Electrocatalytic Reactions for Converting CO 2 to Value-Added Products: Recent Progress and Emerging Trends.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: MDPI Country of Publication: Switzerland NLM ID: 101092791 Publication Model: Electronic Cited Medium: Internet ISSN: 1422-0067 (Electronic) Linking ISSN: 14220067 NLM ISO Abbreviation: Int J Mol Sci Subsets: MEDLINE
    • Publication Information:
      Original Publication: Basel, Switzerland : MDPI, [2000-
    • Subject Terms:
    • Abstract:
      Carbon dioxide (CO 2 ) emissions are an important environmental issue that causes greenhouse and climate change effects on the earth. Nowadays, CO 2 has various conversion methods to be a potential carbon resource, such as photocatalytic, electrocatalytic, and photo-electrocatalytic. CO 2 conversion into value-added products has many advantages, including facile control of the reaction rate by adjusting the applied voltage and minimal environmental pollution. The development of efficient electrocatalysts and improving their viability with appropriate reactor designs is essential for the commercialization of this environmentally friendly method. In addition, microbial electrosynthesis which utilizes an electroactive bio-film electrode as a catalyst can be considered as another option to reduce CO 2 . This review highlights the methods which can contribute to the increase in efficiency of carbon dioxide reduction (CO 2 R) processes through electrode structure with the introduction of various electrolytes such as ionic liquid, sulfate, and bicarbonate electrolytes, with the control of pH and with the control of the operating pressure and temperature of the electrolyzer. It also presents the research status, a fundamental understanding of carbon dioxide reduction reaction (CO 2 RR) mechanisms, the development of electrochemical CO 2 R technologies, and challenges and opportunities for future research.
    • References:
      Adv Mater. 2016 May;28(18):3423-52. (PMID: 26996295)
      Natl Sci Rev. 2021 Aug 11;9(5):nwab142. (PMID: 35591920)
      Nat Commun. 2019 Sep 2;10(1):3919. (PMID: 31477719)
      Acc Chem Res. 2022 Mar 1;55(5):638-648. (PMID: 35041403)
      Nat Chem. 2018 Sep;10(9):974-980. (PMID: 30013194)
      Chem Rec. 2019 Jul;19(7):1272-1282. (PMID: 30298975)
      Int J Mol Sci. 2022 Dec 06;23(23):. (PMID: 36499732)
      Chem Commun (Camb). 2020 Oct 1;56(78):11677-11680. (PMID: 33000792)
      Chem Soc Rev. 2014 Jan 21;43(2):631-75. (PMID: 24186433)
      Nat Commun. 2019 Jun 26;10(1):2807. (PMID: 31243275)
      Angew Chem Int Ed Engl. 2017 Sep 25;56(40):12219-12223. (PMID: 28741847)
      ChemSusChem. 2021 May 20;14(10):2198-2204. (PMID: 33687795)
      J Am Chem Soc. 2019 Oct 23;141(42):16635-16642. (PMID: 31509393)
      J Am Chem Soc. 2018 Feb 28;140(8):2880-2889. (PMID: 29409320)
      Adv Mater. 2018 Dec;30(49):e1803111. (PMID: 30368917)
      Nat Commun. 2014 Jul 30;5:4470. (PMID: 25073814)
      Chem Rev. 2018 Jan 24;118(2):434-504. (PMID: 29220170)
      Nat Commun. 2019 Apr 23;10(1):1876. (PMID: 31015439)
      Chem Rev. 2019 Jun 26;119(12):7610-7672. (PMID: 31117420)
      Nat Chem. 2013 Apr;5(4):263-75. (PMID: 23511414)
      ChemSusChem. 2020 Mar 9;13(5):929-937. (PMID: 31880398)
      Int J Mol Sci. 2020 Dec 25;22(1):. (PMID: 33375617)
      Nat Commun. 2016 Jun 30;7:12123. (PMID: 27356485)
      Small. 2021 Nov;17(44):e2100323. (PMID: 34151517)
      J Phys Chem Lett. 2017 Jan 5;8(1):285-290. (PMID: 27983864)
      Science. 2016 Jul 29;353(6298):467-70. (PMID: 27471300)
      Chem Commun (Camb). 2021 Jul 6;57(54):6680-6683. (PMID: 34132265)
      Angew Chem Int Ed Engl. 2018 Jul 26;57(31):9744-9748. (PMID: 29862657)
      Chem Soc Rev. 2017 Jul 31;46(15):4631-4644. (PMID: 28635998)
      Small. 2021 Apr;17(16):e2005148. (PMID: 33448131)
      Nat Commun. 2020 Feb 27;11(1):1088. (PMID: 32107389)
      Science. 2015 Jul 3;349(6243):aac4722. (PMID: 26138982)
      Int J Mol Sci. 2016 Dec 24;18(1):. (PMID: 28029116)
      J Am Chem Soc. 2021 Apr 14;143(14):5386-5395. (PMID: 33725440)
      Chempluschem. 2021 May;86(5):763-777. (PMID: 33973736)
      Mater Horiz. 2023 Feb 6;10(2):292-312. (PMID: 36524420)
      Int J Mol Sci. 2022 Sep 24;23(19):. (PMID: 36232584)
      Nat Commun. 2022 Apr 6;13(1):1877. (PMID: 35387994)
      Nat Commun. 2021 Aug 16;12(1):4943. (PMID: 34400626)
      Chem Soc Rev. 2017 Mar 6;46(5):1427-1463. (PMID: 28165079)
      Angew Chem Int Ed Engl. 2016 May 4;55(19):5789-92. (PMID: 27059162)
      Biotechnol Adv. 2023 Mar-Apr;63:108098. (PMID: 36649797)
      J Am Chem Soc. 2020 May 27;142(21):9735-9743. (PMID: 32338904)
      Nature. 2012 Aug 16;488(7411):294-303. (PMID: 22895334)
      Adv Sci (Weinh). 2021 Dec;8(24):e2102886. (PMID: 34719862)
      Sci Total Environ. 2020 Nov 1;741:140198. (PMID: 32574921)
      ACS Nano. 2017 Jan 24;11(1):453-460. (PMID: 27991762)
      ACS Nano. 2022 Nov 22;16(11):19210-19219. (PMID: 36255287)
    • Grant Information:
      2021RIS-003 National Research Foundation of Korea; 23UMRG-B158194-04 Korea Agency for Infrastructure Technology Advancement; 20011124, TS227-28R Ministry of Trade, Industry and Energy; SS2241-10 Korea Research Institute of Chemical Technology
    • Contributed Indexing:
      Keywords: CO2 conversion; electrochemical reaction; microbial electrosynthesis; reduction reaction
    • Accession Number:
      142M471B3J (Carbon Dioxide)
      0 (Bicarbonates)
    • Publication Date:
      Date Created: 20230628 Date Completed: 20230629 Latest Revision: 20230701
    • Publication Date:
      20240829
    • Accession Number:
      PMC10298586
    • Accession Number:
      10.3390/ijms24129952
    • Accession Number:
      37373100