Measuring vection: a review and critical evaluation of different methods for quantifying illusory self-motion.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: United States NLM ID: 101244316 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1554-3528 (Electronic) Linking ISSN: 1554351X NLM ISO Abbreviation: Behav Res Methods Subsets: MEDLINE
    • Publication Information:
      Publication: 2010- : New York : Springer
      Original Publication: Austin, Tex. : Psychonomic Society, c2005-
    • Subject Terms:
    • Abstract:
      The sensation of self-motion in the absence of physical motion, known as vection, has been scientifically investigated for over a century. As objective measures of, or physiological correlates to, vection have yet to emerge, researchers have typically employed a variety of subjective methods to quantify the phenomenon of vection. These measures can be broadly categorized into the occurrence of vection (e.g., binary choice yes/no), temporal characteristics of vection (e.g., onset time/latency, duration), the quality of the vection experience (e.g., intensity rating scales, magnitude estimation), or indirect (e.g., distance travelled) measures. The present review provides an overview and critical evaluation of the most utilized vection measures to date and assesses their respective merit. Furthermore, recommendations for the selection of the most appropriate vection measures will be provided to assist with the process of vection research and to help improve the comparability of research findings across different vection studies.
      (© 2023. The Author(s).)
    • References:
      Allison, R. S., Howard, I. P., & Zacher, J. E. (1999). Effect of field size, head motion, and rotational velocity on roll vection and illusory self-tilt in a tumbling room. Perception, 28(3), 299–306. https://doi.org/10.1068/p2891. (PMID: 10.1068/p289110615468)
      Altman, D. G., & Royston, P. (2006). The cost of dichotomising continuous variables. BMJ, 332(7549), 1080. https://doi.org/10.1136/bmj.332.7549.1080. (PMID: 10.1136/bmj.332.7549.1080166758161458573)
      Bar-Hillel, M., Peer, E., & Acquisti, A. (2014). Heads or tails?—A reachability bias in binary choice. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(6), 1656. https://psycnet.apa.org/doi/10.1037/xlm0000005. (PMID: 24773285)
      Berthoz, A., Pavard, B., & Young, L. R. (1975). Perception of linear horizontal self-motion induced by peripheral vision (linearvection) basic characteristics and visual-vestibular interactions. Experimental Brain Research, 23(5), 471–489. https://doi.org/10.1007/BF00234916. (PMID: 10.1007/BF002349161081949)
      Berti, S., & Keshavarz, B. (2020). Neuropsychological approaches to visually-induced vection: an overview and evaluation of neuroimaging and neurophysiological studies. Multisensory Research, 34(2), 153–186. https://doi.org/10.1163/22134808-bja10035. (PMID: 10.1163/22134808-bja1003533706273)
      Berti, S., Haycock, B., Adler, J., & Keshavarz, B. (2019). Early cortical processing of vection-inducing visual stimulation as measured by event-related brain potentials (ERP). Displays, 58, 56–65. https://doi.org/10.1016/j.displa.2018.10.002. (PMID: 10.1016/j.displa.2018.10.002)
      Bhandari, M., Lochner, H., & Tornetta, P. (2002). Effect of continuous versus dichotomous outcome variables on study power when sample sizes of orthopaedic randomized trials are small. Archives of Orthopaedic and Trauma Surgery, 122(2), 96–98. https://doi.org/10.1007/s004020100347. (PMID: 10.1007/s00402010034711880910)
      Bleichrodt, H., & Johannesson, M. (1997). An experimental test of a theoretical foundation for rating-scale valuations. Medical Decision Making, 17(2), 208–216. https://doi.org/10.1177/0272989X9701700212. (PMID: 10.1177/0272989X97017002129107617)
      Brandt, T., Wist, E., & Dichgans, J. (1971). Optisch induzierte Pseudocoriolis-Effekte und Circularvektion. Arch. Psychiat. Nervenkr., 214, 365–389. https://doi.org/10.1007/BF00342671. (PMID: 10.1007/BF003426715315978)
      Brandt, T., Dichgans, J., & Koenig, E. (1973). Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Experimental Brain Research, 16(5), 476–491. https://doi.org/10.1007/BF00234474. (PMID: 10.1007/BF002344744695777)
      Bremmer, F., & Lappe, M. (1999). The use of optical velocities for distance discrimination and reproduction during visually simulated self motion. Experimental Brain Research, 127(1), 33–42. https://doi.org/10.1007/s002210050771. (PMID: 10.1007/s00221005077110424412)
      Britton, Z., & Arshad, Q. (2019). Vestibular and multi-sensory influences upon self-motion perception and the consequences for human behavior. Frontiers in neurology, 10, 63. https://doi.org/10.3389/fneur.2019.00063. (PMID: 10.3389/fneur.2019.00063308992386416181)
      Camacho, S., Dop, M., de Graaf, C., & Stieger, M. (2015). Just noticeable differences and Weber fraction of oral thickness perception of model beverages. Journal of Food Science, 80(7), S1583–S1588. https://doi.org/10.1111/1750-3841.12922. (PMID: 10.1111/1750-3841.1292226053966)
      Carpenter-Smith, T. R., & Parker, D. E. (1992). The effects of unidirectional visual surround translation on detection of physical linear motion direction: A psychophysical scale for vection. Annals of the New York Academy of Sciences, 656(1), 817–819. https://doi.org/10.1111/j.1749-6632.1992.tb25262.x. (PMID: 10.1111/j.1749-6632.1992.tb25262.x1599188)
      Carpenter-Smith, T. R., Futamura, R. G., & Parker, D. E. (1995). Inertial acceleration as a measure of linear vection: An alternative to magnitude estimation. Perception & psychophysics, 57(1), 35–42. https://doi.org/10.3758/BF03211848. (PMID: 10.3758/BF03211848)
      Cha, Y.-H., Golding, J. F., Keshavarz, B., Furman, J., Kim, J.-S., Lopez-Escamez, J. A., Magnusson, M., Yates, B. J., Lawson, B. D., Staab, J., & Bisdorff, A. (2021). Motion sickness diagnostic criteria: Consensus document of the classification committee of the Bárány society. Journal of Vestibular Research: Equilibrium & Orientation. https://doi.org/10.3233/VES-200005.
      Cheng, Z., & Gu, Y. (2018). Vestibular system and self-motion. Frontiers in Cellular Neuroscience, 12, 456. https://doi.org/10.3389/fncel.2018.00456. (PMID: 10.3389/fncel.2018.00456305242476262063)
      Cheung, B. S. K., & Howard, I. P. (1991). Optokinetic torsion: dynamics and relation to circularvection. Vision research, 31(7-8), 1327–1335. https://doi.org/10.1016/0042-6989(91)90054-9. (PMID: 10.1016/0042-6989(91)90054-91891821)
      Cullen, K. E., & Zobeiri, O. A. (2021). Proprioception and the predictive sensing of active self-motion. Current opinion in physiology, 20, 29–38. https://doi.org/10.1016/j.cophys.2020.12.001. (PMID: 10.1016/j.cophys.2020.12.001339542708095676)
      D’Amour, S., Bos, J. E., & Keshavarz, B. (2017). The efficacy of airflow and seat vibration on reducing visually induced motion sickness. Experimental Brain Research, 235(9), 2811–2820. https://doi.org/10.1007/s00221-017-5009-1. (PMID: 10.1007/s00221-017-5009-128634889)
      D’Amour, S., Harris, L. R., Berti, S., & Keshavarz, B. (2021). The role of cognitive factors and personality traits in the perception of illusory self-motion (vection). Attention, Perception, & Psychophysics, 83(4), 1804–1817. https://doi.org/10.3758/s13414-020-02228-3. (PMID: 10.3758/s13414-020-02228-3)
      Dhar, R., & Simonson, I. (2003). The effect of forced choice on choice. Journal of Marketing Research, 40(2), 146–160. https://doi.org/10.1509/jmkr.40.2.146.19229. (PMID: 10.1509/jmkr.40.2.146.19229)
      Dolnicar, S. (2003). Simplifying three-way questionnaires-do the advantages of binary answer categories compensate for the loss of information? In ANZMAC CD Proceedings. https://ro.uow.edu.au/commpapers/417/.
      Dolnicar, S., & Leisch, F. (2012). One legacy of Mazanec: binary questions are a simple, stable and valid measure of evaluative beliefs. International Journal of Culture, Tourism and Hospitality Research, 6(4), 316–325. https://doi.org/10.1108/17506181211265059. (PMID: 10.1108/17506181211265059)
      Dolnicar, S., Grün, B., & Leisch, F. (2011). Quick, simple and reliable: Forced binary survey questions. International Journal of Market Research, 53(2), 231–252. https://doi.org/10.2501/IJMR-53-2-231-252. (PMID: 10.2501/IJMR-53-2-231-252)
      Farkhatdinov, I., Ouarti, N., & Hayward, V. (2013). Vibrotactile inputs to the feet can modulate vection. In In 2013 World Haptics Conference (WHC) (pp. 677–681). IEEE. https://doi.org/10.1109/WHC.2013.6548490. (PMID: 10.1109/WHC.2013.6548490)
      Fauville, G., Queiroz, A. C. M., Woolsey, E. S., Kelly, J. W., & Bailenson, J. N. (2021). The effect of water immersion on vection in virtual reality. Scientific Reports, 11(1), 1022. https://doi.org/10.1038/s41598-020-80100-y. (PMID: 10.1038/s41598-020-80100-y334418037806968)
      Fischer, M. H., & Kornmüller, A. E. (1930). Der Schwindel. In Handbuch der normalen und pathologischen Physiologie (pp. 442–494). Springer.
      Fischer, M. H., & Wodak, E. (1924). Unbekannte vestibulariseffekte bei gleichzeitiger äqualer doppelspülung. Klinische Wochenschrift, 3(31), 1406–1407. https://doi.org/10.1007/BF01852444.
      Furnham, A., & Boo, H. C. (2011). A literature review of the anchoring effect. The Journal of Socio-Economics, 40(1), 35–42. https://doi.org/10.1016/j.socec.2010.10.008. (PMID: 10.1016/j.socec.2010.10.008)
      Grant, J. S., Kinney, M., & Guzzetta, C. E. (1990). Using magnitude estimation scaling to examine the validity of nursing diagnoses. International Journal of Nursing Terminologies and Classifications, 1(2), 64–69. https://doi.org/10.1111/j.1744-618X.1990.tb00240.x. (PMID: 10.1111/j.1744-618X.1990.tb00240.x)
      Gurnsey, R., Fleet, D., & Potechin, C. (1998). Second-order motions contribute to vection. Vision Research, 38(18), 2801–2816.
      Guterman, P. S., & Allison, R. S. (2019). Higher-order cognitive processes moderate body tilt effects in vection. Displays, 58, 44–55. https://doi.org/10.1016/j.displa.2019.03.004. (PMID: 10.1016/j.displa.2019.03.004)
      Guterman, P. S., Allison, R. S., Palmisano, S., & Zacher, J. E. (2012). Influence of head orientation and viewpoint oscillation on linear vection. Journal of Vestibular Research, 22(2-3), 105–116. https://doi.org/10.3233/VES-2012-0448. (PMID: 10.3233/VES-2012-044823000610)
      Harris, L. R., Jenkin, M., & Zikovitz, D. C. (2000). Visual and non-visual cues in the perception of linear self motion. Experimental brain research, 135(1), 12–21. https://doi.org/10.1007/s002210000504. (PMID: 10.1007/s00221000050411104123)
      Heeter, C. (1992). Being there: The subjective experience of presence. Presence Teleoperators Virtual Environ., 1(2), 262–271. (PMID: 10.1162/pres.1992.1.2.262)
      Hettinger, L., Schmidt-Daly, T. N., Jones, D. L., & Keshavarz, B. (2014). Illusory Self-Motion in Virtual Environments. In Stanney, K. M., & Hale, K. S. (Eds.), Handbook of virtual environments: Design, implementations, and applications (2nd ed., pp. 435–465). CRC Press.
      Howard, I. P., & Howard, A. (1994). Vection: the contributions of absolute and relative visual motion. Perception, 23(7), 745–751. https://doi.org/10.1068/p230745. (PMID: 10.1068/p2307457845766)
      James, W. (1890). Chapter 19: The Perception of “Things.” In The Principles of Psychology (Vol. 2, pp. 76–133). : Henry Holt and Company.
      Keshavarz, B., & Berti, S. (2014). Integration of sensory information precedes the sensation of vection: a combined behavioral and event-related brain potential (ERP) study. Behavioural brain research, 259, 131–136. https://doi.org/10.1016/j.bbr.2013.10.045. (PMID: 10.1016/j.bbr.2013.10.04524211538)
      Keshavarz, B., & Golding, J. F. (2022). Motion sickness: Current concepts and management. Current Opinion in Neurology, 35(1), 107–112. https://doi.org/10.1097/WCO.0000000000001018. (PMID: 10.1097/WCO.000000000000101834839340)
      Keshavarz, B., Campos, J. L., & Berti, S. (2015a). Vection lies in the brain of the beholder: EEG parameters as an objective measurement of vection. Frontiers in Psychology, 6, 1581. https://doi.org/10.3389/fpsyg.2015.01581. (PMID: 10.3389/fpsyg.2015.01581265282264602099)
      Keshavarz, B., Riecke, B. E., Hettinger, L. J., & Campos, J. L. (2015b). Vection and visually induced motion sickness: how are they related? Frontiers in Psychology, 6, 472. https://doi.org/10.3389/fpsyg.2015.00472. (PMID: 10.3389/fpsyg.2015.00472259415094403286)
      Keshavarz, B., Speck, M., Haycock, B., & Berti, S. (2017). Effect of different display types on vection and its interaction with motion direction and field dependence. I-Perception, 8(3), 2041669517707768. https://doi.org/10.1177/2041669517707768. (PMID: 10.1177/2041669517707768285158665423592)
      Kim, J., & Palmisano, S. (2008). Effects of active and passive viewpoint jitter on vection in depth. Brain Research Bulletin, 77(6), 335–342. https://doi.org/10.1016/j.brainresbull.2008.09.011. (PMID: 10.1016/j.brainresbull.2008.09.01118930789)
      Kirollos, R., & Herdman, C. M. (2021). Measuring circular vection speed in a virtual reality headset. Displays, 69, 102049. https://doi.org/10.1016/j.displa.2021.102049. (PMID: 10.1016/j.displa.2021.102049)
      Kirollos, R., Allison, R. S., & Palmisano, S. (2017). Cortical correlates of the simulated viewpoint oscillation advantage for vection. Multisensory Research, 30(7–8), 739–761. https://doi.org/10.1163/22134808-00002593. (PMID: 10.1163/22134808-00002593)
      Kitazaki, M., Hamada, T., Yoshiho, K., Kondo, R., Amemiya, T., Hirota, K., & Ikei, Y. (2019). Virtual walking sensation by prerecorded oscillating optic flow and synchronous foot vibration. I-Perception, 10(5), 2041669519882448. https://doi.org/10.1177/2041669519882448. (PMID: 10.1177/2041669519882448316628386796215)
      Kleinschmidt, A., Thilo, K. V., Büchel, C., Gresty, M. A., Bronstein, A. M., & Frackowiak, R. S. J. (2002). Neural Correlates of Visual-Motion Perception as Object- or Self-motion. NeuroImage, 16(4), 873–882. https://doi.org/10.1006/nimg.2002.1181. (PMID: 10.1006/nimg.2002.118112202076)
      Kooijman, L., Asadi, H., Mohamed, S., & Nahavandi, S. (2022). A systematic review and meta-analysis on the use of tactile stimulation in vection research. Attention, Perception, & Psychophysics, 84, 300–320. https://doi.org/10.3758/s13414-021-02400-3. (PMID: 10.3758/s13414-021-02400-3)
      Kooijman, L., Asadi, H., Mohamed, S., & Nahavandi, S. (2023). A virtual reality study investigating the train illusion. Royal Society Open Science, 10(4), 221622. https://doi.org/10.1098/rsos.221622.
      Kovács, G., Raabe, M., & Greenlee, M. W. (2008). Neural correlates of visually induced self-motion illusion in depth. Cerebral Cortex, 18(8), 1779–1787. https://doi.org/10.1093/cercor/bhm203. (PMID: 10.1093/cercor/bhm20318063566)
      Kuiper, O. X., Bos, J. E., & Diels, C. (2019). Vection does not necessitate visually induced motion sickness. Displays, 58, 82–87. https://doi.org/10.1016/j.displa.2018.10.001. (PMID: 10.1016/j.displa.2018.10.001)
      Larsson, P., Västfjäll, D., & Kleiner, M. (2004). Perception of self-motion and presence in auditory virtual environments. In Proceedings of the Presence Seventh Annual International Workshop (Vol. 2004, pp. 252-258).
      LeBoeuf, R. A., & Shafir, E. (2006). The long and short of it: physical anchoring effects. Journal of Behavioral Decision Making, 19(4), 393–406. https://doi.org/10.1002/bdm.535. (PMID: 10.1002/bdm.535)
      Lepecq, J. C., Jouen, F., & Dubon, D. (1993). The effect of linear vection on manual aiming at memorized directions of stationary targets. Perception, 22(1), 49–60. https://doi.org/10.1068/p220049. (PMID: 10.1068/p2200498474834)
      Lind, S., Thomsen, L., Egeberg, M., Nilsson, N., Nordahl, R., & Serafin, S. (2016). Effects of vibrotactile stimulation during virtual sandboarding. In 2016 IEEE Virtual Reality (VR) (pp. 219–220). IEEE. https://doi.org/10.1109/VR.2016.7504732. (PMID: 10.1109/VR.2016.7504732)
      Mach, E. (1875). Grundlinien der Lehre von den Bewegungsempfindungen. Leipzig: W. Engelmann. https://books.google.com.au/books?id=pE0aAAAAYAAJ Accessed 10 th November 2021.
      McAssey, M., Dowsett, J., Kirsch, V., Brandt, T., & Dieterich, M. (2020). Different EEG brain activity in right and left handers during visually induced self-motion perception. Journal of Neurology, 267(Suppl 1), 79–90. https://doi.org/10.1007/s00415-020-09915-z.
      Melcher, G. A., & Henn, V. (1981). The latency of circular vection during different accelerations of the optokinetic stimulus. Perception & Psychophysics, 30, 552–556. https://doi.org/10.3758/BF03202009. (PMID: 10.3758/BF03202009)
      Miller, M. A., O’Leary, C. J., Allen, P. D., & Crane, B. T. (2015). Human vection perception using inertial nulling and certainty estimation: the effect of migraine history. PLoS ONE, 10(8), 1–25. https://doi.org/10.1371/journal.pone.0135335. (PMID: 10.1371/journal.pone.0135335)
      Murovec, B., Spaniol, J., Campos, J. L., & Keshavarz, B. (2021). Multisensory effects on illusory self-motion (vection): the role of visual, auditory, and tactile cues. Multisensory Research, 34(8), 869–890. https://doi.org/10.1163/22134808-bja10058. (PMID: 10.1163/22134808-bja10058)
      Mursic, R. A., & Palmisano, S. (2020). The Shepard–Risset glissando: Identifying the origins of metaphorical auditory vection and motion sickness. Multisensory Research, 33(1), 61–86. https://doi.org/10.1163/22134808-20191450.
      Mursic, R. A., Riecke, B. E., Apthorp, D., & Palmisano, S. (2017). The Shepard–Risset glissando: Music that moves you. Experimental Brain Research, 235(10), 3111–3127. https://doi.org/10.1007/s00221-017-5033-1.
      Nilsson, N. C., Nordahl, R., Sikström, E., Turchet, L., & Serafin, S. (2012). Haptically induced illusory self-motion and the influence of context of motion. In P. Isokoski & J. Springare (Eds.), Haptics: Perception, Devices, Mobility, and Communication. EuroHaptics 2012 (Lecture Notes in Computer Science) (Vol. 7282). Springer. https://doi.org/10.1007/978-3-642-31401-8_32. (PMID: 10.1007/978-3-642-31401-8_32)
      Nooij, S. A. E., Pretto, P., Oberfeld, D., Hecht, H., & Bülthoff, H. H. (2017). Vection is the main contributor to motion sickness induced by visual yaw rotation: Implications for conflict and eye movement theories. PLoS ONE, 12(4), 1–19. https://doi.org/10.1371/journal.pone.0175305. (PMID: 10.1371/journal.pone.0175305)
      Nordahl, R., Nilsson, N. C., Turchet, L., & Serafin, S. (2012). Vertical illusory self-motion through haptic stimulation of the feet. In In 2012 IEEE VR Workshop on Perceptual Illusions in Virtual Environments (pp. 21–26). IEEE. https://doi.org/10.1109/PIVE.2012.6229796. (PMID: 10.1109/PIVE.2012.6229796)
      Ohmi, M., Howard, I. P., & Landolt, J. P. (1987). Circular vection as a function of foreground-background relationships. Perception, 16(1), 17–22. https://doi.org/10.1068/p160017. (PMID: 10.1068/p1600173671036)
      Ouarti, N., Lécuyer, A., & Berthoz, A. (2014). Haptic motion: Improving sensation of self-motion in virtual worlds with force feedback. In In 2014 IEEE Haptics Symposium (HAPTICS) (pp. 167–174). IEEE. https://doi.org/10.1109/HAPTICS.2014.6775450. (PMID: 10.1109/HAPTICS.2014.6775450)
      Palmisano, S., & Chan, A. Y. C. (2004). Jitter and size effects on vection are immune to experimental instructions and demands. Perception, 33(8), 987–1000. https://doi.org/10.1068/p5242. (PMID: 10.1068/p524215521696)
      Palmisano, S., & Gillam, B. J. (1998). Stimulus eccentricity and spatial frequency interact to determine circular vection. Perception, 27(9), 1067–1078. https://doi.org/10.1068/p271067. (PMID: 10.1068/p27106710341936)
      Palmisano, S., & Kim, J. (2009). Effects of gaze on vection from jittering, oscillating, and purely radial optic flow. Attention, Perception, & Psychophysics, 71(8), 1842–1853. https://doi.org/10.3758/APP.71.8.1842. (PMID: 10.3758/APP.71.8.1842)
      Palmisano, S., & Riecke, B. E. (2018). The search for instantaneous vection: an oscillating visual prime reduces vection onset latency. PloS one, 13(5), e0195886. https://doi.org/10.1371/journal.pone.0195886. (PMID: 10.1371/journal.pone.0195886297914455965835)
      Palmisano, S., Allison, R. S., & Howard, I. P. (2006). Illusory scene distortion occurs during perceived self-rotation in roll. Vision Research, 46(23), 4048–4058. https://doi.org/10.1016/j.visres.2006.07.020. (PMID: 10.1016/j.visres.2006.07.02016979685)
      Palmisano, S., Bonato, F., Bubka, A., & Folder, J. (2007). Vertical display oscillation effects on forward vection and simulator sickness. Aviation, Space, and Environmental Medicine, 78(10), 951–956. https://doi.org/10.3357/ASEM.2079.2007. (PMID: 10.3357/ASEM.2079.200717955943)
      Palmisano, S., Allison, R. S., & Pekin, F. (2008). Accelerating self-motion displays produce more compelling vection in depth. Perception, 37(1), 22–33. https://doi.org/10.1068/p5806. (PMID: 10.1068/p580618399245)
      Palmisano, S., Allison, R. S., Schira, M. M., & Barry, R. J. (2015). Future challenges for vection research: definitions, functional significance, measures, and neural bases. Frontiers in Psychology, 6, 193. https://doi.org/10.3389/fpsyg.2015.00193. (PMID: 10.3389/fpsyg.2015.00193257741434342884)
      Palmisano, S., Barry, R. J., De Blasio, F. M., & Fogarty, J. S. (2016a). Identifying objective EEG based markers of linear vection in depth. Frontiers in Psychology, 7, 1205. https://doi.org/10.3389/fpsyg.2016.01205. (PMID: 10.3389/fpsyg.2016.01205275593284979253)
      Palmisano, S., Summersby, S., Davies, R. G., & Kim, J. (2016b). Stereoscopic advantages for vection induced by radial, circular, and spiral optic flows. Journal of Vision, 16(14), 7. https://doi.org/10.1167/16.14.7. (PMID: 10.1167/16.14.727832269)
      Parker, R. I., Vannest, K. J., & Davis, J. L. (2013). Reliability of multi-category rating scales. Journal of School Psychology, 51(2), 217–229. https://doi.org/10.1016/j.jsp.2012.12.003. (PMID: 10.1016/j.jsp.2012.12.00323481086)
      Peters, M. A. K., Ro, T., & Lau, H. (2016). Who’s afraid of response bias? Neuroscience of Consciousness, 2016(1). https://doi.org/10.1093/nc/niw001.
      Post, R. B. (1988). Circular vection is independent of stimulus eccentricity. Perception, 17(6), 737–744. https://doi.org/10.1068/p170737. (PMID: 10.1068/p1707373253677)
      Previc, F. H., Kenyon, R. V., Boer, E. R., & Johnson, B. H. (1993). The effects of background visual roll stimulation on postural and manual control and self-motion perception. Perception & psychophysics, 54(1), 93–107. https://doi.org/10.3758/BF03206941. (PMID: 10.3758/BF03206941)
      Riecke, B. E., Schulte-Pelkum, J., Avraamides, M. N., von der Heyde, M., & Bülthoff, H. H. (2005a). Scene consistency and spatial presence increase the sensation of self-motion in virtual reality. In Proceedings of the 2nd Symposium on Applied Perception in Graphics and Visualization (pp. 111–118). https://doi.org/10.1145/1080402.1080422.
      Riecke, B. E., Schulte-Pelkum, J., Caniard, F., & Bülthoff, H. H. (2005b). Towards lean and elegant self-motion simulation in virtual reality. In IEEE Proceedings. VR 2005. Virtual Reality, 2005. (pp. 131–138). https://doi.org/10.1109/VR.2005.1492765.
      Riecke, B. E., Schulte-Pelkum, J., Caniard, F., & Bülthoff, H. H. (2005c). Spatialized auditory cues enhance the visually-induced self-motion illusion (circular vection) in Virtual Reality. Max Planck Institute for Biological Cybernetics. http://hdl.handle.net/11858/00-001M-0000-0013-D407-9.
      Riecke, B. E., Schulte-Pelkum, J., Caniard, F., & Bülthoff, H. H. (2005d). Influence of auditory cues on the visually-induced self-motion illusion (circular vection) in virtual reality. In 8th International Workshop on Presence (PRESENCE 2005). (pp. 49–57). http://hdl.handle.net/11858/00-001M-0000-0013-D43B-4.
      Riecke, B. E., Schulte-Pelkum, J., Avraamides, M. N., von der Heyde, M., & Bülthoff, H. H. (2006). Cognitive factors can influence self-motion perception (vection) in virtual reality. ACM Transactions on Applied Perception (TAP), 3(3), 194–216. https://doi.org/10.1145/1166087.1166091. (PMID: 10.1145/1166087.1166091)
      Riecke, B. E., Feuereissen, D., & Rieser, J. J. (2009a). Auditory self-motion simulation is facilitated by haptic and vibrational cues suggesting the possibility of actual motion. ACM Transactions on Applied Perception (TAP), 6(3). https://doi.org/10.1145/1577755.1577763.
      Riecke, B. E., Väljamäe, A., & Schulte-Pelkum, J. (2009b). Moving sounds enhance the visually-induced self-motion illusion (circular vection) in virtual reality. ACM Transactions on Applied Perception (TAP), 6(2), 1–27. https://doi.org/10.1145/1498700.1498701. (PMID: 10.1145/1498700.1498701)
      Riecke, B. E., Feuereissen, D., Rieser, J. J., & McNamara, T. P. (2011). Spatialized sound enhances biomechanically-induced self-motion illusion (vection). In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 2799-2802). https://doi.org/10.1145/1978942.1979356.
      Riecke, B. E., Feuereissen, D., Rieser, J. J., & McNamara, T. P. (2015). More than a cool illusion? Functional significance of self-motion illusion (circular vection) for perspective switches. Frontiers in Psychology, 6, 1174. https://doi.org/10.3389/fpsyg.2015.01174. (PMID: 10.3389/fpsyg.2015.01174263219894531211)
      Sauvan, X. M., & Bonnet, C. (1993). Properties of curvilinear vection. Perception & Psychophysics, 53(4), 429–435. https://doi.org/10.3758/BF03206786. (PMID: 10.3758/BF03206786)
      Seno, T., Ito, H., & Sunaga, S. (2010). Vection aftereffects from expanding/contracting stimuli. Seeing and Perceiving, 23, 273–294. https://doi.org/10.1163/187847510X532667. (PMID: 10.1163/187847510X53266721466145)
      Seno, T., Palmisano, S., & Ito, H. (2011). Independent modulation of motion and vection aftereffects revealed by using coherent oscillation and random jitter in optic flow. Vision Research, 51, 2499–2508. https://doi.org/10.1016/j.visres.2011.10.007. (PMID: 10.1016/j.visres.2011.10.00722040596)
      Seno, T., Ito, H., & Sunaga, S. (2012). Vection can be induced in the absence of explicit motion stimuli. Experimental brain research, 219, 235–244. https://doi.org/10.1007/s00221-012-3083-y. (PMID: 10.1007/s00221-012-3083-y22476214)
      Seno, T., Funatsu, F., & Palmisano, S. (2013). Virtual swimming—breaststroke body movements facilitate vection. Multisensory Research, 26(3), 267–275. https://doi.org/10.1163/22134808-00002402. (PMID: 10.1163/22134808-0000240223964478)
      Seno, T., Sawai, K. I., Kanaya, H., Wakebe, T., Ogawa, M., Fujii, Y., & Palmisano, S. (2017). The oscillating potential model of visually induced vection. i-Perception, 8(6), 2041669517742176. https://doi.org/10.1177/2F2041669517742176. (PMID: 10.1177/2F2041669517742176292042635703118)
      Seno, T., Murata, K., Fujii, Y., Kanaya, H., Ogawa, M., Tokunaga, K., & Palmisano, S. (2018). Vection is enhanced by increased exposure to optic flow. i-Perception, 9(3), 2041669518774069. https://doi.org/10.1177/2041669518774069. (PMID: 10.1177/2041669518774069300464306055108)
      Seya, Y., Shinoda, H., & Nakaura, Y. (2015). Up-down asymmetry in vertical vection. Vision Research, 117, 16–24. https://doi.org/10.1016/j.visres.2015.10.013. (PMID: 10.1016/j.visres.2015.10.01326518744)
      Siegle, J. H., Campos, J. L., Mohler, B. J., Loomis, J. M., & Bülthoff, H. H. (2009). Measurement of instantaneous perceived self-motion using continuous pointing. Experimental Brain Research, 195(3), 429–444. https://doi.org/10.1007/s00221-009-1805-6. (PMID: 10.1007/s00221-009-1805-619396591)
      Soave, F., Bryan-Kinns, N., & Farkhatdinov, I. (2020). A Preliminary Study on Full-Body Haptic Stimulation on Modulating Self-motion Perception in Virtual Reality. In L. De Paolis & P. Bourdot (Eds.), Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2020 (Lecture Notes in Computer Science) (Vol. 12242). Springer. https://doi.org/10.1007/978-3-030-58465-8_34. (PMID: 10.1007/978-3-030-58465-8_34)
      Soave, F., Padma Kumar, A., Bryan-Kinns, N., & Farkhatdinov, I. (2021). Exploring terminology for perception of motion in virtual reality. In Designing Interactive Systems Conference 2021 (pp. 171-179). https://doi.org/10.1145/3461778.3462064.
      Stevens, S. S. (1956). The direct estimation of sensory magnitudes: loudness. The American Journal of Psychology, 69(1), 1–25. https://doi.org/10.2307/1418112. (PMID: 10.2307/141811213302496)
      Stevens, S. S. (1957). On the psychophysical law. Psychological Review, 64(3), 153–181. https://doi.org/10.1037/h0046162. (PMID: 10.1037/h004616213441853)
      Stevens, S. S., & Marks, L. E. (2017). Psychophysics: Introduction to its perceptual, neural, and social prospects. Routledge. https://doi.org/10.4324/9781315127675.
      Stróżak, P., Francuz, P., Augustynowicz, P., Ratomska, M., Fudali-Czyż, A., & Bałaj, B. (2016). ERPs in an oddball task under vection-inducing visual stimulation. Experimental Brain Research, 234(12), 3473–3482. https://doi.org/10.1007/s00221-016-4748-8. (PMID: 10.1007/s00221-016-4748-8274883675097106)
      Stróżak, P., Augustynowicz, P., Ratomska, M., Francuz, P., & Fudali-Czyż, A. (2019). Vection attenuates N400 event-related potentials in a change-detection task. Perception, 48(8), 702–730. https://doi.org/10.1177/0301006619861882. (PMID: 10.1177/030100661986188231280661)
      Tanahashi, S., Ujike, H., Kozawa, R., & Ukai, K. (2007). Effects of visually simulated roll motion on vection and postural stabilization. Journal of Neuroengineering and Rehabilitation, 4(1), 1–11. https://doi.org/10.1186/1743-0003-4-39. (PMID: 10.1186/1743-0003-4-39)
      Telford, L., & Frost, B. J. (1993). Factors affecting the onset and magnitude of linear vection. Perception & psychophysics, 53, 682–692. https://doi.org/10.3758/BF03211744. (PMID: 10.3758/BF03211744)
      Tinga, A. M., Jansen, C., van der Smagt, M. J., Nijboer, T. C. W., & van Erp, J. B. F. (2018). Inducing circular vection with tactile stimulation encircling the waist. Acta Psychologica, 182, 32–38. https://doi.org/10.1016/j.actpsy.2017.11.007. (PMID: 10.1016/j.actpsy.2017.11.00729128511)
      Ulrich, R., & Vorbergb, D. (2013). Estimation of discrimination performance in 2AFC tasks. In Fechner Day 2013 - Proceedings of the 29th Annual Meeting of the International Society for Psychophysics, International Society for Psychophysics, Freiburg, Germany, 2013.
      Väljamäe, A. (2009). Auditorily-induced illusory self-motion: A review. Brain research reviews, 61(2), 240–255. https://doi.org/10.1016/j.brainresrev.2009.07.001. (PMID: 10.1016/j.brainresrev.2009.07.00119619584)
      Väljamäe, A., Larsson, P., Vastfjall, D., Kleiner, M., Västfjäll, D., & Kleiner, M. (2005). Travelling without moving: auditory scene cues for translational self-motion. In Proceedings of ICAD 05-Eleventh Meeting of the International Conference on Auditory Display 2005. (pp. 9–16). http://hdl.handle.net/1853/50193.
      Väljamäe, A., Larsson, P., Västfjäll, D., & Kleiner, M. (2008). Sound representing self-motion in virtual environments enhances linear vection. Presence: Teleoperators and Virtual Environments, 17(1), 43–56. https://doi.org/10.1162/pres.17.1.43. (PMID: 10.1162/pres.17.1.43)
      Wang, H., Zhang, C., & Wu, Y. (2016). Just noticeable difference of interaural level difference to frequency and interaural level difference. In Audio Engineering Society Convention 140. Audio Engineering Society. http://www.aes.org/e-lib/browse.cfm?elib=18210.
      Weech, S., Kenny, S., & Barnett-Cowan, M. (2019). Presence and cybersickness in virtual reality are negatively related: a review. Frontiers in Psychology, 10, 158. https://doi.org/10.3389/fpsyg.2019.00158. (PMID: 10.3389/fpsyg.2019.00158307783206369189)
      Weech, S., Kenny, S., Calderon, C. M., & Barnett-Cowan, M. (2020). Limits of subjective and objective vection for ultra-high frame rate visual displays. Displays, 64, 101961. https://doi.org/10.1016/j.displa.2020.101961. (PMID: 10.1016/j.displa.2020.101961)
      Wright, W. G., DiZio, P., & Lackner, J. R. (2006). Perceived self-motion in two visual contexts: dissociable mechanisms underlie perception. Journal of Vestibular Research: Equilibrium & Orientation, 16(1–2), 23–28. https://doi.org/10.3233/VES-2006-161-202. (PMID: 10.3233/VES-2006-161-202)
      Young, L. R. (1991). Perceptions of the body in space: Mechanisms. In R. Terjung (Ed.) Comprehensive Physiology (pp. 1023–1066). John Wiley & Sons. https://doi.org/10.1002/cphy.cp010322.
    • Grant Information:
      DE210101623 Australian Research Council
    • Contributed Indexing:
      Keywords: Binary choice; Chronometric; Distance travelled; Magnitude estimation; Measurement; Rating scales; Self-motion; Two-alternative forced choice
    • Publication Date:
      Date Created: 20230627 Date Completed: 20240405 Latest Revision: 20240815
    • Publication Date:
      20240815
    • Accession Number:
      PMC10991029
    • Accession Number:
      10.3758/s13428-023-02148-8
    • Accession Number:
      37369940