Practice walking on a treadmill-mounted balance beam modifies beam walking sacral movement and alters performance in other balance tasks.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
    • Publication Information:
      Original Publication: San Francisco, CA : Public Library of Science
    • Subject Terms:
    • Abstract:
      The goals of this study were to determine if a single 30-minute session of practice walking on a treadmill mounted balance beam: 1) altered sacral marker movement kinematics during beam walking, and 2) affected measures of balance during treadmill walking and standing balance. Two groups of young, healthy human subjects practiced walking on a treadmill mounted balance beam for thirty minutes. One group trained with intermittent visual occlusions and the other group trained with unperturbed vision. We hypothesized that the subjects would show changes in sacrum movement kinematics after training and that there would be group differences due to larger improvements in beam walking performance by the visual occlusions group. We also investigated if there was any balance transfer from training on the beam to treadmill walking (margin of stability) and to standing static balance (center of pressure excursion). We found significant differences in sacral marker maximal velocity after training for both groups, but no significant differences between the two groups from training. There was limited evidence of balance transfer from beam-walking practice to gait margin of stability for treadmill walking and for single leg standing balance, but not for tandem stance balance. The number of step-offs while walking on a narrow beam had the largest change with training (partial η2 = 0.7), in accord with task specificity. Other balance metrics indicative of transfer had lower effect sizes (partial η2<0.5). Given the limited transfer across balance training tasks, future work should examine how intermittent visual occlusions during multi-task training improve real world functional outcomes.
      Competing Interests: The authors have declared that no competing interests exist.
      (Copyright: © 2023 Symeonidou et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
    • References:
      J Biomech. 2014 Dec 18;47(16):3807-12. (PMID: 25468302)
      Scand J Med Sci Sports. 2006 Oct;16(5):345-8. (PMID: 16978254)
      Trends Neurosci. 2009 Jan;32(1):9-18. (PMID: 19012975)
      Scand J Med Sci Sports. 2016 Mar;26(3):275-83. (PMID: 25756231)
      Sports Med. 2018 Apr;48(4):893-905. (PMID: 29288435)
      PLoS One. 2018 Jul 6;13(7):e0200306. (PMID: 29979750)
      Neuron. 2007 Jan 18;53(2):279-92. (PMID: 17224408)
      J Neurophysiol. 2013 Nov;110(9):2050-60. (PMID: 23926037)
      Eur J Appl Physiol. 2004 Aug;92(4-5):407-13. (PMID: 15205962)
      Int J Sports Med. 2013 Dec;34(12):1093-8. (PMID: 23700328)
      Sci Rep. 2018 Jan 8;8(1):95. (PMID: 29311691)
      Hum Mov Sci. 2004 Apr;22(6):597-610. (PMID: 15063043)
      eNeuro. 2018 Aug 13;5(4):. (PMID: 30105299)
      Trends Cogn Sci. 2020 Jun;24(6):481-495. (PMID: 32317142)
      Sports Med. 2016 Sep;46(9):1261-71. (PMID: 26993132)
      J Biomech. 2012 Apr 5;45(6):1053-9. (PMID: 22326059)
      J Bone Joint Surg Am. 1953 Jul;35-A(3):543-58. (PMID: 13069544)
      J Neurophysiol. 2014 May;111(9):1852-64. (PMID: 24501263)
      J Biomech. 2016 Sep 6;49(13):3085-3089. (PMID: 27492418)
      Phys Ther. 2010 Feb;90(2):157-74. (PMID: 20023002)
      Sci Rep. 2020 May 6;10(1):7629. (PMID: 32376990)
      J Biomech. 2000 Nov;33(11):1433-40. (PMID: 10940402)
      Exp Brain Res. 1990;83(1):22-8. (PMID: 2073943)
      J Neurophysiol. 2016 Aug 1;116(2):272-85. (PMID: 27075544)
      Front Syst Neurosci. 2016 Mar 08;10:18. (PMID: 27013986)
      J Neurophysiol. 2002 Sep;88(3):1097-118. (PMID: 12205132)
      J Neurophysiol. 2018 Oct 1;120(4):1998-2010. (PMID: 30044183)
      Philos Trans A Math Phys Eng Sci. 2009 Mar 28;367(1891):1195-212. (PMID: 19218159)
      J Neurosci. 2011 Mar 9;31(10):3853-61. (PMID: 21389240)
      Nat Rev Neurosci. 2011 Feb;12(2):105-18. (PMID: 21248789)
      Brain Res Rev. 2006 Aug 30;52(1):170-82. (PMID: 16545463)
      Hum Mov Sci. 2015 Dec;44:22-31. (PMID: 26298214)
      Arch Phys Med Rehabil. 2018 Aug;99(8):1491-1498.e1. (PMID: 29653108)
      Gait Posture. 2015 Feb;41(2):619-23. (PMID: 25648493)
      J Strength Cond Res. 2010 Jun;24(6):1458-63. (PMID: 20453683)
      J Strength Cond Res. 2015 Oct;29(10):2907-18. (PMID: 26402476)
      Arch Phys Med Rehabil. 2009 Jan;90(1):136-44. (PMID: 19154840)
      J R Soc Interface. 2018 Jun;15(143):. (PMID: 29875279)
      Gait Posture. 2009 Nov;30(4):464-8. (PMID: 19674900)
      J Mot Behav. 1994 Dec;26(4):333-339. (PMID: 12719190)
      Geriatr Gerontol Int. 2017 Dec;17(12):2294-2303. (PMID: 28621015)
      Sports Med. 2017 Jun;47(6):1075-1086. (PMID: 27704483)
      Exp Brain Res. 2010 Oct;206(4):359-70. (PMID: 20853102)
      PLoS One. 2018 Nov 26;13(11):e0207542. (PMID: 30475850)
      Eur Rev Aging Phys Act. 2017 Mar 2;14:3. (PMID: 28270866)
      Front Hum Neurosci. 2022 Apr 25;16:748930. (PMID: 35547194)
      Science. 2008 Apr 4;320(5872):110-3. (PMID: 18388295)
      Res Q Exerc Sport. 1996 Mar;67(1):69-75. (PMID: 8735996)
    • Grant Information:
      R01 NS104772 United States NS NINDS NIH HHS
    • Publication Date:
      Date Created: 20230615 Date Completed: 20230619 Latest Revision: 20231118
    • Publication Date:
      20250114
    • Accession Number:
      PMC10270570
    • Accession Number:
      10.1371/journal.pone.0283310
    • Accession Number:
      37319297