Overview of autoantibodies in COVID-19 convalescents.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley-Liss Country of Publication: United States NLM ID: 7705876 Publication Model: Print Cited Medium: Internet ISSN: 1096-9071 (Electronic) Linking ISSN: 01466615 NLM ISO Abbreviation: J Med Virol Subsets: MEDLINE
    • Publication Information:
      Publication: New York Ny : Wiley-Liss
      Original Publication: New York, Liss.
    • Subject Terms:
    • Abstract:
      Accumulating evidence shows that SARS-CoV-2 can potentially trigger autoimmune processes, which can be responsible for the long-term consequences of COVID-19. Therefore, this paper aims to review the autoantibodies reported in COVID-19 convalescents. Six main groups were distinguished: (i) autoantibodies against components of the immune system, (ii) autoantibodies against components of the cardiovascular system, (iii) thyroid autoantibodies, (iv) autoantibodies specific for rheumatoid diseases, (v) antibodies against G-protein coupled receptors, and (vi) other autoantibodies. The evidence reviewed here clearly highlights that SARS-CoV-2 infection may induce humoral autoimmune responses. However, the available studies share number of limitations, such as: (1) the sole presence of autoantibodies does not necessarily implicate the clinically-relevant risks, (2) functional investigations were rarely performed and it is often unknown whether observed autoantibodies are pathogenic, (3) the control seroprevalence, in healthy, noninfected individuals was often not reported; thus it is sometimes unknown whether the detected autoantibodies are the result of SARS-CoV-2 infection or the accidental post-COVID-19 detection, (4) the presence of autoantibodies was rarely correlated with symptoms of the post-COVID-19 syndrome, (5) the size of the studied groups were often small, (6) the studies focused predominantly on adult populations, (7) age- and sex-related differences in seroprevalence of autoantibodies were rarely explored, (8) genetic predispositions that may be involved in generation of autoantibodies during SARS-CoV-2 infections were not investigated, and (9) the autoimmune reactions following infection with SARS-CoV-2 variants that vary in the clinical course of infection remain unexplored. Further longitudinal studies are advocated to assess the link between identified autoantibodies and particular clinical outcomes in COVID-19 convalescents.
      (© 2023 Wiley Periodicals LLC.)
    • References:
      Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nature Med. 2021;27(4):601-615.
      World Health Organization. A clinical case definition of post-COVID-19 condition by a Delphi consensus, 6 October 2021. Published October 6, 2021. Accessed January 2, 2023. https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1.
      Al-Jahdhami I, Al-Naamani K, Al-Mawali A, Bennji SM. Respiratory complications after COVID-19. Oman Med J. 2022;37(1):e343.
      Tanni SE, Tonon CR, Gatto M, Mota GAF, Okoshi MP. Post-COVID-19 syndrome: cardiovascular manifestations. Int J Cardiol. 2022;369:80-81.
      Trott M, Driscoll R, Pardhan S. The prevalence of sensory changes in post-COVID syndrome: a systematic review and meta-analysis. Front Med. 2022;9:980253.
      Matsumoto K, Hamatani S, Shimizu E, Käll A, Andersson G. Impact of post-COVID conditions on mental health: a cross-sectional study in Japan and Sweden. BMC Psychiatry. 2022;22(1):237.
      Chen C, Haupert SR, Zimmermann L, Shi X, Fritsche LG, Mukherjee B. Global prevalence of post-Coronavirus disease 2019 (COVID-19) condition or long COVID: a meta-analysis and systematic review. J Infect Dis. 2022;226(9):1593-1607.
      European Centre for Disease Prevention and Control. Prevalence of post-COVID-19 condition symptoms: a systematic review and meta-analysis of cohort study data, stratified by recruitment setting. European Centre for Disease Prevention and Control. Published October 31, 2022. Accessed January 2, 2023. https://www.ecdc.europa.eu/en/publications-data/prevalence-post-covid-19-condition-symptoms-systematic-review-and-meta-analysis.
      Cutler DM. The costs of long COVID. JAMA Health Forum. 2022;3(5):e221809.
      Norton A, Olliaro P, Sigfrid L, et al. Long COVID: tackling a multifaceted condition requires a multidisciplinary approach. Lancet Infect Dis. 2021;21(5):601-602.
      Crook H, Raza S, Nowell J, Young M, Edison P. Long covid-mechanisms, risk factors, and management. BMJ. 2021;374:n1648.
      Hussein HM, Rahal EA. The role of viral infections in the development of autoimmune diseases. Crit Rev Microbiol. 2019;45(4):394-412.
      Smatti MK, Cyprian FS, Nasrallah GK, Al Thani AA, Almishal RO, Yassine HM. Viruses and autoimmunity: a review on the potential interaction and molecular mechanisms. Viruses. 2019;11(8):762.
      Getts DR, Chastain EML, Terry RL, Miller SD. Virus infection, antiviral immunity, and autoimmunity. Immunol Rev. 2013;255(1):197-209.
      Sundaresan B, Shirafkan F, Ripperger K, Rattay K. The role of viral infections in the onset of autoimmune diseases. Viruses. 2023;15(3):782.
      Rojas M, Restrepo-Jiménez P, Monsalve DM, et al. Molecular mimicry and autoimmunity. J Autoimmun. 2018;95:100-123.
      Trost B, Lucchese G, Stufano A, Bickis M, Kusalik A, Kanduc D. No human protein is exempt from bacterial motifs, not even one. Self/Nonself. 2010;1(4):328-334.
      Cusick MF, Libbey JE, Fujinami RS. Molecular mimicry as a mechanism of autoimmune disease. Clin Rev Allergy Immunol. 2012;42(1):102-111.
      Fujinami RS. Viruses and autoimmune disease-two sides of the same coin? TIM. 2001;9(8):377-381.
      Pacheco Y, Acosta-Ampudia Y, Monsalve DM, Chang C, Gershwin ME, Anaya JM. Bystander activation and autoimmunity. J Autoimmun. 2019;103(102301):102301.
      Wucherpfennig KW. Mechanisms for the induction of autoimmunity by infectious agents. J Clin Invest. 2001;108(8):1097-1104.
      Kim TS, Shin EC. The activation of bystander CD8+ T cells and their roles in viral infection. Exp Mol Med. 2019;51(12):1-9.
      Powell AM, Black MM. Epitope spreading: protection from pathogens, but propagation of autoimmunity? Clin Exp Dermatol. 2001;26(5):427-433.
      Dotan A, Muller S, Kanduc D, David P, Halpert G, Shoenfeld Y. The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmun Rev. 2021;20(4):102792.
      O'Donoghue SI, Schafferhans A, Sikta N, et al. SARS-CoV-2 structural coverage map reveals viral protein assembly, mimicry, and hijacking mechanisms. Mol Syst Biol. 2021;17(9):e10079.
      Nunez-Castilla J, Stebliankin V, Baral P, et al. Potential autoimmunity resulting from molecular mimicry between SARS-CoV-2 spike and human proteins. Viruses. 2022;14(7):1415.
      Beaudoin CA, Jamasb AR, Alsulami AF, et al. Predicted structural mimicry of spike receptor-binding motifs from highly pathogenic human coronaviruses. Comput Struct Biotechnol J. 2021;19:3938-3953.
      Felipe Cuspoca A, Isaac Estrada P, Velez-van-Meerbeke A. Molecular mimicry of SARS-CoV-2 spike protein in the nervous system: a bioinformatics approach. Comput Struct Biotechnol J. 2022;20:6041-6054.
      Bai C, Zhong Q, Gao GF. Overview of SARS-CoV-2 genome-encoded proteins. Sci China Life Sci. 2022;65(2):280-294.
      Kovačić D, Jotanović J, Laković J. The possible role of molecular mimicry in SARS-CoV-2-mediated autoimmunity: an immunobiochemical basis. J Med Sci. 2021;90(3):e560.
      Mohamed K, Rzymski P, Islam MS, et al. COVID-19 vaccinations: the unknowns, challenges, and hopes. J Med Virol. 2021;94:1336-1349. doi:10.1002/jmv.27487.
      Rzymski P, Szuster-Ciesielska A, Dzieciątkowski T, Gwenzi W, Fal A. mRNA vaccines: the future of prevention of viral infections? J Med Virol. 2023;95:e28572. doi:10.1002/jmv.28572.
      Jara LJ, Vera-Lastra O, Mahroum N, Pineda C, Shoenfeld Y. Autoimmune post-COVID vaccine syndromes: does the spectrum of autoimmune/inflammatory syndrome expand? Clin Rheumatol. 2022;41(5):1603-1609.
      Chen Y, Xu Z, Wang P, et al. New-onset autoimmune phenomena post-COVID-19 vaccination. Immunology. 2022;165(4):386-401.
      Jerne NK. Towards a network theory of the immune system. Annales d′immunologie. 1974;125C(1-2):373-389.
      Lindenmann J. Homobodies: do they exist? Annales d′immunologie. 1979;130(2):311-318.
      Ladjemi MZ. Anti-idiotypic antibodies as cancer vaccines: achievements and future improvements. Front Oncol. 2012;2:158.
      Gu Y, Cao J, Zhang X, et al. Receptome profiling identifies KREMEN1 and ASGR1 as alternative functional receptors of SARS-CoV-2. Cell Res. 2022;32(1):24-37.
      Jiang W, Johnson D, Adekunle R, et al. COVID-19 is associated with bystander polyclonal autoreactive B cell activation as reflected by a broad autoantibody production, but none is linked to disease severity. J Med Virol. 2023;95(1):e28134.
      Ryan FJ, Hope CM, Masavuli MG, et al. Long-term perturbation of the peripheral immune system months after SARS-CoV-2 infection. BMC Med. 2022;20(1):26.
      Phetsouphanh C, Darley DR, Wilson DB, et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nature Immunol. 2022;23(2):210-216.
      Root-Bernstein R. From co-infections to autoimmune disease via hyperactivated innate immunity: COVID-19 autoimmune coagulopathies, autoimmune myocarditis and multisystem inflammatory syndrome in children. Int J Mol Sci. 2023;24(3):3001.
      Peluso MJ, Mitchell A, Wang CY, et al. Low prevalence of interferon α autoantibodies in people experiencing symptoms of post-Coronavirus disease 2019 (COVID-19) conditions, or long COVID. J Infect Dis. 2023;227(2):246-250.
      Acosta-Ampudia Y, Monsalve DM, Rojas M, et al. Persistent autoimmune activation and proinflammatory state in post-Coronavirus disease 2019 syndrome. J Infect Dis. 2022;225(12):2155-2162.
      Su Y, Yuan D, Chen DG, et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell. 2022;185(5):881-895.
      Moody R, Sonda S, Johnston FH, et al. Antibodies against spike protein correlate with broad autoantigen recognition 8 months post SARS-CoV-2 exposure, and anti-calprotectin autoantibodies associated with better clinical outcomes. Front Immunol. 2022;13:945021.
      Bastard P, Rosen LB, Zhang Q, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4585.
      Proal AD, VanElzakker MB. Long COVID or post-acute sequelae of COVID-19 (PASC): an overview of biological factors that may contribute to persistent symptoms. Front Microbiol. 2021;12:698169.
      Wang EY, Mao T, Klein J, et al. Diverse functional autoantibodies in patients with COVID-19. Nature. 2021;595(7866):283-288.
      Xie Y, Xu E, Bowe B, Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nature Med. 2022;28(3):583-590.
      Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023;21(3):133-146.
      Haffke M, Freitag H, Rudolf G, et al. Endothelial dysfunction and altered endothelial biomarkers in patients with post-COVID-19 syndrome and chronic fatigue syndrome (ME/CFS). J Transl Med. 2022;20(1):138.
      Charfeddine S, Ibn Hadj Amor H, Jdidi J, et al. Long COVID 19 syndrome: is it related to microcirculation and endothelial dysfunction? Insights from TUN-EndCOV study. Front Cardiovasc Med. 2021;8:745758.
      L'Huillier AG, Pagano S, Baggio S, et al. Autoantibodies against apolipoprotein A-1 after COVID-19 predict symptoms persistence. Eur J Clin Invest. 2022;52(10):e13818.
      Pisareva E, Badiou S, Mihalovičová L, et al. Persistence of neutrophil extracellular traps and anticardiolipin auto-antibodies in post-acute phase COVID-19 patients. J Med Virol. 2023;95(1):e28209.
      Xu C, Fan J, Luo Y, et al. Prevalence and characteristics of rheumatoid-associated autoantibodies in patients with COVID-19. J Inflamm Res. 2021;14:3123-3128.
      Lingel H, Meltendorf S, Billing U, et al. Unique autoantibody prevalence in long-term recovered SARS-CoV-2-infected individuals. J Autoimmun. 2021;122(102682):102682.
      Arthur JM, Forrest JC, Boehme KW, et al. Development of ACE2 autoantibodies after SARS-CoV-2 infection. PLoS One. 2021;16(9):e0257016.
      Hallmann E, Sikora D, Poniedziałek B, et al. IgG autoantibodies against ACE2 in SARS-CoV-2 infected patients. J Med Virol. 2023;95(1):e28273.
      Flaskamp L, Roubal C, Uddin S, et al. Serum of post-COVID-19 syndrome patients with or without ME/CFS differentially affects endothelial cell function in vitro. Cells. 2022;11(15):2376.
      Lee ECY, Tyler RE, Johnson D, et al. High frequency of anti-DSG 2 antibodies in post COVID-19 serum samples. J Mol Cell Cardiol. 2022;170:121-123.
      Schultheiß C, Willscher E, Paschold L, et al. The IL-1β, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19. Cell Rep Med. 2022;3(6):100663.
      Bertin D, Kaphan E, Weber S, et al. Persistent IgG anticardiolipin autoantibodies are associated with post-COVID syndrome. Int J Infect Dis. 2021;113:23-25.
      Dudek J, Hartmann M, Rehling P. The role of mitochondrial cardiolipin in heart function and its implication in cardiac disease. Biochimica et Biophysica Acta (BBA)-Mol Basis Dis. 2019;1865(4):810-821.
      Shen Z, Ye C, McCain K, Greenberg ML. The role of cardiolipin in cardiovascular health. BioMed Res Int. 2015;2015:1-12.
      Vaarala O, Mänttäri M, Manninen V, et al. Anti-cardiolipin antibodies and risk of myocardial infarction in a prospective cohort of middle-aged men. Circulation. 1995;91(1):23-27.
      Zuin M, Rigatelli G, Battisti V, Costola G, Roncon L, Bilato C. Increased risk of acute myocardial infarction after COVID-19 recovery: a systematic review and meta-analysis. Int J Cardiol. 2023;372:138-143.
      Anderson JLC, Pagano S, Virzi J, et al. Autoantibodies to apolipoprotein A-1 as independent predictors of cardiovascular mortality in renal transplant recipients. J Clin Med. 2019;8(7):948.
      Vuilleumier N, Rossier MF, Pagano S, et al. Anti-apolipoprotein A-1 IgG as an independent cardiovascular prognostic marker affecting basal heart rate in myocardial infarction. Eur Heart J. 2010;31(7):815-823.
      Antiochos P, Marques-Vidal P, Virzi J, et al. Association between anti-apolipoprotein A-1 antibodies and cardiovascular disease in the general population. Results from the CoLaus study. Thromb Haemost. 2016;116(4):764-771.
      Kolitz T, Shiber S, Sharabi I, Winder A, Zandman-Goddard G. Cardiac manifestations of antiphospholipid syndrome with focus on its primary form. Front Immunol. 2019;10:941.
      Marzoog BA. Coagulopathy and brain injury pathogenesis in post-covid-19 syndrome. Cardiovasc Hematol Agents Med Chem. 2022;20(3):178-188.
      Sciascia S, Sanna G, Murru V, Roccatello D, Khamashta MA, Bertolaccini ML. Anti-prothrombin (aPT) and anti-phosphatidylserine/prothrombin (aPS/PT) antibodies and the risk of thrombosis in the antiphospholipid syndrome. A systematic review. Thromb Haemost. 2014;112(2):354-364.
      Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. 2020.
      Rodriguez-Perez AI, Labandeira CM, Pedrosa MA, et al. Autoantibodies against ACE2 and angiotensin type-1 receptors increase severity of COVID-19. J Autoimmun. 2021;122(102683):102683.
      Turner AJ. ACE2 cell biology, regulation, and physiological functions. In: The Protective Arm of the Renin Angiotensin System (RAS). Elsevier; 2015:185-189.
      Samavati L, Uhal BD. ACE2, much more than just a receptor for SARS-COV-2. Front Cell Infect Microbiol. 2020;10:317.
      Casciola-Rosen L, Thiemann DR, Andrade F, et al. IgM anti-ACE2 autoantibodies in severe COVID-19 activate complement and perturb vascular endothelial function. JCI Insight. 2022;7(9):e158362. doi:10.1172/jci.insight.158362.
      McMillan P, Uhal BD. COVID-19-a theory of autoimmunity to ACE-2. MOJ Immunol. 2020;7(1):17-19.
      McMillan P, Dexhiemer T, Neubig RR, Uhal BD. COVID-19-a theory of autoimmunity against ACE-2 explained. Front Immunol. 2021;12:582166.
      Townsend A. Autoimmunity to ACE2 as a possible cause of tissue inflammation in Covid-19. Med Hypotheses. 2020;144(110043):110043.
      Li MY, Li L, Zhang Y, Wang XS. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty. 2020;9(1):45. doi:10.1186/s40249-020-00662-x.
      Wang W, Su X, Ding Y, et al. Thyroid function abnormalities in COVID-19 patients. Front Endocrinol (Lausanne). 2020;11:623792.
      Lui DTW, Lee CH, Chow WS, et al. Long COVID in patients with mild to moderate disease: do thyroid function and autoimmunity play a role? Endocrine Practice. 2021;27(9):894-902.
      Urhan E, Karaca Z, Kara CS, Yuce ZT, Unluhizarci K. The potential impact of COVID-19 on thyroid gland volumes among COVID-19 survivors. Endocrine. 2022;76(3):635-641.
      Rojas M, Rodríguez Y, Acosta-Ampudia Y, et al. Autoimmunity is a hallmark of post-COVID syndrome. J Transl Med. 2022;20(1):129.
      Richter AG, Shields AM, Karim A, et al. Establishing the prevalence of common tissue-specific autoantibodies following severe acute respiratory syndrome coronavirus 2 infection. Clin Exp Immunol. 2021;205(2):99-105.
      Raveendran AV, Jayadevan R, Sashidharan S. Long COVID: an overview. Diab Metabolic Syndrome: Clinical Res Rev. 2021;15(3):869-875.
      Chang SE, Feng A, Meng W, et al. New-onset IgG autoantibodies in hospitalized patients with COVID-19. Nat Commun. 2021;12(1):5417.
      Choi MY, FitzPatrick RD, Buhler K, Mahler M, Fritzler MJ. A review and meta-analysis of anti-ribosomal P autoantibodies in systemic lupus erythematosus. Autoimmun Rev. 2020;19(3):102463.
      Son K, Jamil R, Chowdhury A, et al. Circulating anti-nuclear autoantibodies in COVID-19 survivors predict long COVID symptoms. Eur Respir J. 2022;61(1):2200970. doi:10.1183/13993003.00970-2022.
      Klimova EM, Bozhkov AI, Lavinska OV, Drozdova LA, Kurhuzova NI. Low molecular weight cytotoxic components (DAMPs) form the post-COVID-19 syndrome. Immunobiology. 2023;228(1):152316.
      Zhao XF. G protein-coupled receptors function as cell membrane receptors for the steroid hormone 20-hydroxyecdysone. Cell Commun Signaling. 2020;18(1):146.
      Riemekasten G, Petersen F, Heidecke H. What makes antibodies against G protein-coupled receptors so special? A novel concept to understand chronic diseases. Front Immunol. 2020;11:564526.
      Wallukat G, Hohberger B, Wenzel K, et al. Functional autoantibodies against G-protein coupled receptors in patients with persistent Long-COVID-19 symptoms. J Translational Autoimmunity. 2021;4(100100):100100.
      Kharraziha I, Axelsson J, Ricci F, et al. Serum activity against G protein-coupled receptors and severity of orthostatic symptoms in postural orthostatic tachycardia syndrome. J Am Heart Assoc. 2020;9(15):e015989.
      Kohr D, Singh P, Tschernatsch M, et al. Autoimmunity against the β2 adrenergic receptor and muscarinic-2 receptor in complex regional pain syndrome. Pain. 2011;152(12):2690-2700.
      Orjatsalo M, Partinen E, Wallukat G, Alakuijala A, Partinen M. Activating autoantibodies against G protein-coupled receptors in narcolepsy type 1. Sleep Med. 2021;77:82-87.
      Schlick S, Lucio M, Wallukat G, et al. Post-COVID-19 syndrome: retinal microcirculation as a potential marker for chronic fatigue. Int J Mol Sci. 2022;23(22):13683.
      Fu MLX, Herlitz H, Schulze W, et al. Autoantibodies against the angiotensin receptor (AT1) in patients with hypertension. J Hypertens. 2000;18(7):945-953.
      Wallukat G, Homuth V, Fischer T, et al. Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J Clin Invest. 1999;103(7):945-952.
      Mejia-Vilet JM, López-Hernández YJ, Santander-Vélez JI, et al. Angiotensin II receptor agonist antibodies are associated with microvascular damage in lupus nephritis. Lupus. 2020;29(4):371-378.
      Riemekasten G, Philippe A, Näther M, et al. Involvement of functional autoantibodies against vascular receptors in systemic sclerosis. Ann Rheum Dis. 2011;70(3):530-536.
      Kal M, Winiarczyk M, Mackiewicz J, et al. The effect of reduced oxygen saturation on retinal microvascularization in COVID-19 patients with bilateral pneumonia based on optical coherence tomography study. J Pers Med. 2022;12(11):1824.
      Kal M, Winiarczyk M, Cieśla E, et al. Retinal microvascular changes in COVID-19 bilateral pneumonia based on optical coherence tomography angiography. J Clin Med. 2022;11(13):3621.
      Hohberger B, Ganslmayer M, Lucio M, et al. Retinal microcirculation as a correlate of a systemic capillary impairment after severe acute respiratory syndrome coronavirus 2 infection. Front Med. 2021;8:676554.
      Szewczykowski C, Mardin C, Lucio M, et al. Long COVID: association of functional autoantibodies against G-protein-coupled receptors with an impaired retinal microcirculation. Int J Mol Sci. 2022;23(13):7209.
      Thurner L, Fadle N, Regitz E, et al. Autoantibodies against SUMO1-DHX35 in long-COVID. J Translational Autoimmunity. 2022;5(100171):100171.
      Aubart M, Roux CJ, Durrleman C, et al. Neuroinflammatory disease following severe acute respiratory syndrome coronavirus 2 infection in children. J Pediatr. 2022;247:22-28.e2.
      Norman GL, Navaz SA, Kanthi Y, et al. Circulating calprotectin as a predictive and severity biomarker in patients with COVID-19. Diagnostics. 2022;12(6):1324. doi:10.3390/diagnostics12061324.
      Mahler M, Meroni PL, Infantino M, Buhler KA, Fritzler MJ. Circulating calprotectin as a biomarker of COVID-19 severity. Expert Rev Clin Immunol. 2021;17(5):431-443.
      Prasad RM, Bellacosa A, Yen TJ. Clinical and molecular features of anti-CENP-B autoantibodies. J Mol Pathol. 2021;2(4):281-295.
      Tramposch HD, Douglas Smith C, Senecal JL, Rothfield N. A long-term longitudinal study of anticentromere antibodies. Arthritis Rheumatism. 1984;27(2):121-124.
      Hildebrandt S, Weiner ES, Earnshaw WC, Zanetti M, Rothfield NF. Idiotypic analysis of human anticentromere autoantibodies. Autoimmunity. 1991;9(2):131-140.
      Vázquez-Abad D, Russell CA, Cusick SM, Earnshaw WC, Rothfield NF. Longitudinal study of anticentromere and antitopoisomerase-I isotypes. Clin Immunol Immunopathol. 1995;74(3):257-270.
      Baer AN, Medrano L, McAdams-DeMarco M, Gniadek TJ. Association of anticentromere antibodies with more severe exocrine glandular dysfunction in Sjögren's syndrome: analysis of the Sjögren's International Collaborative Clinical Alliance Cohort: anticentromere antibodies in Sjögren's syndrome. Arthritis Care Res. 2016;68(10):1554-1559.
      Lee SL, Tsay GJ, Tsai RT. Anticentromere antibodies in subjects with no apparent connective tissue disease. Ann Rheum Dis. 1993;52(8):586-589.
      Atalay C, Dogan L, Atalay G. Anti-CENP-B antibodies are associated with prolonged survival in breast cancer. Future Oncol. 2010;6(3):471-477.
      Tan L, Zhang Y, Jiang Y, et al. The clinical significance of anti-mitotic spindle apparatus antibody (MSA) and anti-centromere antibody (ACA) detected in patients with small cell lung cancer (SCLC). Am J Clin Exp Immunol. 2017;6(2):21-26.
      Igusa T, Hummers LK, Visvanathan K, et al. Autoantibodies and scleroderma phenotype define subgroups at high-risk and low-risk for cancer. Ann Rheum Dis. 2018;77(8):2018-2129.
      Khoja O, Silva Passadouro B, Mulvey M, et al. Clinical characteristics and mechanisms of musculoskeletal pain in Long COVID. J Pain Res. 2022;15:1729-1748.
      Vadasz Z, Haj T, Kessel A, Toubi E. Age-related autoimmunity. BMC Med. 2013;11(1):94.
      Billi AC, Kahlenberg JM, Gudjonsson JE. Sex bias in autoimmunity. Curr Opin Rheumatol. 2019;31(1):53-61.
      Johnson D, Jiang W. Infectious diseases, autoantibodies, and autoimmunity. J Autoimmun. 2022;102962:102962.
      Flisiak R, Rzymski P, Zarębska-Michaluk D, et al. Variability in the clinical course of COVID-19 in a retrospective analysis of a large real-world database. Viruses. 2023;15(1):149.
      Hyams C, Challen R, Marlow R, et al. Severity of Omicron (B.1.1.529) and Delta (B.1.617.2) SARS-CoV-2 infection among hospitalised adults: A prospective cohort study in Bristol, United Kingdom. Lancet Regional Health-Europe. 2023;25(100556):100556.
      Kläser K, Molteni E, Graham M, et al. COVID-19 due to the B.1.617.2 (Delta) variant compared to B.1.1.7 (Alpha) variant of SARS-CoV-2: a prospective observational cohort study. Sci Rep. 2022;12(1):10904.
      O'Mahoney LL, Routen A, Gillies C, et al. The prevalence and long-term health effects of Long Covid among hospitalised and non-hospitalised populations: a systematic review and meta-analysis. EClinicalMedicine. 2023;55(101762):101762.
      Byambasuren O, Stehlik P, Clark J, Alcorn K, Glasziou P. Effect of covid-19 vaccination on long covid: systematic review. BMJ Med. 2023;2(1):e000385.
      Piccin A, Mullin B, Brown A, Benson G. The lack of anti-PF4 antibodies in convalescent plasma from COVID-19 infected blood donor. Transfus Med. 2023;33(3):272-273. doi:10.1111/tme.12965.
      Senefeld JW, Johnson PW, Kunze KL, et al. Access to and safety of COVID-19 convalescent plasma in the United States Expanded Access Program: a national registry study. PLoS Med. 2021;18(12):e1003872.
    • Contributed Indexing:
      Keywords: SARS-CoV-2; autoimmunity; long COVID; pandemic; post-COVID-19 syndrome
    • Accession Number:
      0 (Autoantibodies)
      0 (Blood Group Antigens)
    • Subject Terms:
      SARS-CoV-2 variants
    • Publication Date:
      Date Created: 20230613 Date Completed: 20230615 Latest Revision: 20230625
    • Publication Date:
      20231215
    • Accession Number:
      10.1002/jmv.28864
    • Accession Number:
      37310140