Menu
×
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 6 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 6 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Lost world of complex life and the late rise of the eukaryotic crown.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Brocks JJ;Brocks JJ; Nettersheim BJ; Nettersheim BJ; Nettersheim BJ; Adam P; Adam P; Schaeffer P; Schaeffer P; Jarrett AJM; Jarrett AJM; Jarrett AJM; Güneli N; Güneli N; Liyanage T; Liyanage T; van Maldegem LM; van Maldegem LM; Hallmann C; Hallmann C; Hope JM; Hope JM
- Source:
Nature [Nature] 2023 Jun; Vol. 618 (7966), pp. 767-773. Date of Electronic Publication: 2023 Jun 07.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
- Publication Information: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd. - Subject Terms: Biological Evolution* ; Eukaryota*/chemistry ; Eukaryota*/classification ; Eukaryota*/metabolism ; Fossils*; Bacteria/chemistry ; Bacteria/metabolism ; Eukaryotic Cells/chemistry ; Eukaryotic Cells/classification ; Eukaryotic Cells/metabolism ; Sterols/analysis ; Sterols/biosynthesis ; Sterols/isolation & purification ; Sterols/metabolism ; Geologic Sediments/chemistry ; Biosynthetic Pathways ; Aquatic Organisms/chemistry ; Aquatic Organisms/classification ; Aquatic Organisms/metabolism ; Biota ; Phylogeny ; History, Ancient
- Abstract: Eukaryotic life appears to have flourished surprisingly late in the history of our planet. This view is based on the low diversity of diagnostic eukaryotic fossils in marine sediments of mid-Proterozoic age (around 1,600 to 800 million years ago) and an absence of steranes, the molecular fossils of eukaryotic membrane sterols 1,2 . This scarcity of eukaryotic remains is difficult to reconcile with molecular clocks that suggest that the last eukaryotic common ancestor (LECA) had already emerged between around 1,200 and more than 1,800 million years ago. LECA, in turn, must have been preceded by stem-group eukaryotic forms by several hundred million years 3 . Here we report the discovery of abundant protosteroids in sedimentary rocks of mid-Proterozoic age. These primordial compounds had previously remained unnoticed because their structures represent early intermediates of the modern sterol biosynthetic pathway, as predicted by Konrad Bloch 4 . The protosteroids reveal an ecologically prominent 'protosterol biota' that was widespread and abundant in aquatic environments from at least 1,640 to around 800 million years ago and that probably comprised ancient protosterol-producing bacteria and deep-branching stem-group eukaryotes. Modern eukaryotes started to appear in the Tonian period (1,000 to 720 million years ago), fuelled by the proliferation of red algae (rhodophytes) by around 800 million years ago. This 'Tonian transformation' emerges as one of the most profound ecological turning points in the Earth's history.
(© 2023. The Author(s), under exclusive licence to Springer Nature Limited.) - References: Butterfield, N. J. Early evolution of the Eukaryota. Palaeontology 58, 5–17 (2015). (PMID: 10.1111/pala.12139)
Gueneli, N. et al. 1.1-Billion-year-old porphyrins establish a marine ecosystem dominated by bacterial primary producers. Proc. Natl Acad. Sci. USA 115, E6978–E6986 (2018). (PMID: 29987033606498710.1073/pnas.1803866115)
Betts, H. C. et al. Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nat. Ecol. Evol. 2, 1556–1562 (2018). (PMID: 30127539615291010.1038/s41559-018-0644-x)
Bloch, K. in Blondes in Venetian Paintings, the Nine-Banded Armadillo, and Other Essays in Biochemistry 14–36 (Yale Univ. Press, 1994).
Eme, L., Sharpe, S. C., Brown, M. W. & Roger, A. J. On the age of eukaryotes: evaluating evidence from fossils and molecular clocks. Cold Spring Harb. Perspect. Biol. 6, a016139 (2014). (PMID: 25085908410798810.1101/cshperspect.a016139)
Parfrey, L. W., Lahr, D. J. G., Knoll, A. H. & Katz, L. A. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl Acad. Sci. USA 108, 13624–13629 (2011). (PMID: 21810989315818510.1073/pnas.1110633108)
Chernikova, D., Motamedi, S., Csuros, M., Koonin, E. & Rogozin, I. A late origin of the extant eukaryotic diversity: divergence time estimates using rare genomic changes. Biol. Direct 6, 26 (2011). (PMID: 21595937312539410.1186/1745-6150-6-26)
Knoll, A. H. Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harb. Perspect. Biol. 6, a016121 (2014). (PMID: 24384569394121910.1101/cshperspect.a016121)
Javaux, E. & Knoll, A. Micropaleontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution. J. Palaeontol. 91, 199–229 (2017). (PMID: 10.1017/jpa.2016.124)
Butterfield, N. J. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26, 386–404 (2000). (PMID: 10.1666/0094-8373(2000)026<0386:BPNGNS>2.0.CO;2)
Tang, Q., Pang, K., Yuan, X. & Xiao, S. A one-billion-year-old multicellular chlorophyte. Nat. Ecol. Evol. 4, 543–549 (2020). (PMID: 32094536866815210.1038/s41559-020-1122-9)
Loron, C. C. et al. Early fungi from the Proterozoic era in Arctic Canada. Nature 570, 232–235 (2019). (PMID: 3111850710.1038/s41586-019-1217-0)
Porter, S. M. & Knoll, H. Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology 26, 360–385 (2000). (PMID: 10.1666/0094-8373(2000)026<0360:TAITNE>2.0.CO;2)
Welander, P. V. Deciphering the evolutionary history of microbial cyclic triterpenoids. Free Radical Biol. Med. 140, 270–278 (2019). (PMID: 10.1016/j.freeradbiomed.2019.05.002)
Brocks, J. J. et al. The rise of algae in Cryogenian oceans and the emergence of animals. Nature 548, 578–581 (2017). (PMID: 2881340910.1038/nature23457)
Zumberge, J. A., Rocher, D. & Love, G. D. Free and kerogen-bound biomarkers from late Tonian sedimentary rocks record abundant eukaryotes in mid-Neoproterozoic marine communities. Geobiology 18, 326–347 (2019). (PMID: 31865640723346910.1111/gbi.12378)
Desmond, E. & Gribaldo, S. Phylogenomics of sterol synthesis: insights into the origin, evolution, and diversity of a key eukaryotic feature. Genome Biol. Evol. 1, 364–381 (2009). (PMID: 20333205281743010.1093/gbe/evp036)
Grantham, P. J. & Wakefield, L. L. Variations in the sterane carbon number distributions of marine source rock derived crude oils through geological time. Org. Geochem. 12, 61–73 (1988). (PMID: 10.1016/0146-6380(88)90115-5)
Hoshino, Y. et al. Cryogenian evolution of stigmasteroid biosynthesis. Sci. Adv. 3, e1700887 (2017). (PMID: 28948220560671010.1126/sciadv.1700887)
Pawlowska, M. M., Butterfield, N. J. & Brocks, J. J. Lipid taphonomy in the Proterozoic and the effect of microbial mats on biomarker preservation. Geology 41, 103–106 (2013). (PMID: 10.1130/G33525.1)
Porter, S. M., Agić, H. & Riedman, L. A. Anoxic ecosystems and early eukaryotes. Emerg. Top. Life Sci. 2, 299–309 (2018). (PMID: 3241262710.1042/ETLS20170162)
Nguyen, K. et al. Absence of biomarker evidence for early eukaryotic life from the Mesoproterozoic Roper Group: Searching across a marine redox gradient in mid-Proterozoic habitability. Geobiology 17, 247–260 (2019). (PMID: 3062932310.1111/gbi.12329)
Porter, S. M. Insights into eukaryogenesis from the fossil record. Interface Focus 10, 20190105 (2020). (PMID: 32642050733390510.1098/rsfs.2019.0105)
Anbar, A. D. & Knoll, A. H. Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297, 1137–1142 (2002). (PMID: 1218361910.1126/science.1069651)
Butterfield, N. J. Oxygen, animals and oceanic ventilation: an alternative view. Geobiology 7, 1–7 (2009). (PMID: 1920014110.1111/j.1472-4669.2009.00188.x)
Brocks, J. J. The transition from a cyanobacterial to algal world and the emergence of animals. Emerg. Top. Life Sci. 2, 181–190 (2018). (PMID: 3241262510.1042/ETLS20180039)
Jarrett, A. J. M. et al. Microbial assemblage and paleoenvironmental reconstruction of the 1.3 Ga Velkerri Formation, McArthur Basin, northern Australia. Geobiology 17, 360–380 (2019). (PMID: 30734481661811210.1111/gbi.12331)
Bloch, K. E. Sterol structure and membrane function. CRC Crit. Rev. Biochem. 14, 47–92 (1983). (PMID: 634095610.3109/10409238309102790)
Dufourc, E. J. Sterols and membrane dynamics. J. Chem. Biol. 1, 63–77 (2008). (PMID: 19568799269831410.1007/s12154-008-0010-6)
Brocks, J. J. et al. Biomarker evidence for green and purple sulphur bacteria in a stratified Paleoproterozoic sea. Nature 437, 866–870 (2005). (PMID: 1620836710.1038/nature04068)
Summons, R. E. et al. Distinctive hydrocarbon biomarkers from fossiliferous sediments of the Late Proterozoic Walcott Member, Chuar Group, Grand Canyon, Arizona. Geochim. Cosmochim. Acta 52, 2625–2637 (1988). (PMID: 10.1016/0016-7037(88)90031-2)
van Maldegem, L. M. et al. Geological alteration of Precambrian steroids mimics early animal signatures. Nat. Ecol. Evol. 5, 169–173 (2021). (PMID: 3323025510.1038/s41559-020-01336-5)
Hoshino, Y. & Gaucher, E. A. Evolution of bacterial steroid biosynthesis and its impact on eukaryogenesis. Proc. Natl Acad. Sci. USA 118, e2101276118 (2021). (PMID: 34131078823757910.1073/pnas.2101276118)
Gold, D. A., Caron, A., Fournier, G. P. & Summons, R. E. Paleoproterozoic sterol biosynthesis and the rise of oxygen. Nature 543, 420–423 (2017). (PMID: 2826419510.1038/nature21412)
Wei, J. H., Yin, X. & Welander, P. V. Sterol synthesis in diverse bacteria. Front Microbiol 7, 990–990 (2016). (PMID: 27446030491934910.3389/fmicb.2016.00990)
Zhang, X., Paoletti, M., Izon, G., Fournier, G. & Summons, R. Isotopic evidence of photoheterotrophy in Palaeoproterozoic Chlorobi. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-2444442/v1 (2023).
Knoll, A. H., Javaux, E., Hewitt, D. & Cohen, P. Eukaryotic organisms in Proterozoic oceans. Phil. Trans. R. Soc. B 361, 1023–1038 (2006). (PMID: 16754612157872410.1098/rstb.2006.1843)
Anderson, R. H. et al. Sterols lower energetic barriers of membrane bending and fission necessary for efficient clathrin-mediated endocytosis. Cell Rep. 37, 110008 (2021). (PMID: 34788623862019310.1016/j.celrep.2021.110008)
Michellod, D. et al. De novo phytosterol synthesis in animals. Science 380, 520–526 (2023). (PMID: 3714136010.1126/science.add7830)
Gold, D. A. The slow rise of complex life as revealed through biomarker genetics. Emerg. Top. Life Sci. 2, 191–199 (2018). (PMID: 3241262210.1042/ETLS20170150)
Koumandou, V. L. et al. Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit. Rev. Biochem. Mol. Biol. 48, 373–396 (2013). (PMID: 23895660379148210.3109/10409238.2013.821444)
Dupont, S., Beney, L., Ferreira, T. & Gervais, P. Nature of sterols affects plasma membrane behavior and yeast survival during dehydration. Biochim. Biophys. Acta 1808, 1520–1528 (2011). (PMID: 2108111110.1016/j.bbamem.2010.11.012)
Rogowska, A. & Szakiel, A. The role of sterols in plant response to abiotic stress. Phytochemistry 19, 1525–1538 (2020). (PMID: 10.1007/s11101-020-09708-2)
Santalova, E. A. et al. Sterols from six marine sponges. Biochem. Syst. Ecol. 32, 153 (2004). (PMID: 10.1016/S0305-1978(03)00143-1)
Tillmann, U. Kill and eat your predator: a winning strategy of the planktonic flagellate Prymnesium parvum. Aquat. Microb. Ecol. 32, 73–84 (2003). (PMID: 10.3354/ame032073)
Brocks, J. J. et al. Early sponges and toxic protists: possible sources of cryostane, an age diagnostic biomarker antedating Sturtian Snowball Earth. Geobiology 14, 129–149 (2016). (PMID: 2650769010.1111/gbi.12165)
Galea, A. M. & Brown, A. J. Special relationship between sterols and oxygen: were sterols an adaptation to aerobic life? Free Radical Biol. Med. 47, 880 (2009). (PMID: 10.1016/j.freeradbiomed.2009.06.027)
Canfield, D. E. Oxygen—A Four Billion Year History (Princeton Univ. Press, 2014).
Planavsky, N. J. et al. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346, 635–638 (2014). (PMID: 2535997510.1126/science.1258410)
Mentel, M. & Martin, W. Energy metabolism among eukaryotic anaerobes in light of Proterozoic ocean chemistry. Phil. Trans. R. Soc. B 363, 2717–2729 (2008). (PMID: 18468979260676710.1098/rstb.2008.0031)
Mills, D. B. et al. Eukaryogenesis and oxygen in Earth history. Nat. Ecol. Evol. 6, 520–532 (2022). (PMID: 3544945710.1038/s41559-022-01733-y)
Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014). (PMID: 2455323810.1038/nature13068)
Hoffman, P. F. et al. Snowball Earth climate dynamics and Cryogenian geology–geobiology.Sci. Adv. 3, e1600983 (2017). (PMID: 29134193567735110.1126/sciadv.1600983)
Porter, S. M., Meisterfeld, R. & Knoll, A. H. Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: a classification guided by modern testate amoebae. J. Paleontol. 77, 409–429 (2003). (PMID: 10.1666/0022-3360(2003)077<0409:VMFTNC>2.0.CO;2)
Gibson, T. M. et al. Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology 46, 135–138 (2017). (PMID: 10.1130/G39829.1)
Butterfield, N. J., Knoll, A. H. & Swett, K. A bangiophyte red alga from the Proterozoic of arctic Canada. Science 250, 104–107 (1990). (PMID: 1153807210.1126/science.11538072)
Butterfield, N. J. Proterozoic photosynthesis—a critical review. Palaeontology 58, 953–972 (2015). (PMID: 10.1111/pala.12211)
Beghin, J. et al. Microfossils from the late Mesoproterozoic–early Neoproterozoic Atar/El Mreïti Group, Taoudeni Basin, Mauritania, northwestern Africa. Precambrian Res. 291, 63–82 (2017). (PMID: 10.1016/j.precamres.2017.01.009)
French, K. L. et al. Reappraisal of hydrocarbon biomarkers in Archean rocks. Proc. Natl Acad. Sci. USA 112, 5915–5920 (2015). (PMID: 25918387443475410.1073/pnas.1419563112)
Jarrett, A., Schinteie, R., Hope, J. M. & Brocks, J. J. Micro-ablation, a new technique to remove drilling fluids and other contaminants from fragmented and fissile rock material. Org. Geochem. 61, 57–65 (2013). (PMID: 10.1016/j.orggeochem.2013.06.005)
Brocks, J. J. Millimeter-scale concentration gradients of hydrocarbons in Archean shales: live-oil escape or fingerprint of contamination? Geochim. Cosmochim. Acta 75, 3196–3213 (2011). (PMID: 10.1016/j.gca.2011.03.014)
Schinteie, R. et al. Impact of drill core contamination on compound-specific carbon and hydrogen isotopic signatures. Org. Geochem. 128, 161–171 (2019). (PMID: 10.1016/j.orggeochem.2019.01.003)
Schinteie, R. & Brocks, J. J. Evidence for ancient halophiles? Testing biomarker syngeneity of evaporites from Neoproterozoic and Cambrian strata. Org. Geochem. 72, 46–58 (2014). (PMID: 10.1016/j.orggeochem.2014.04.009)
Brocks, J. J., Grosjean, E. & Logan, G. A. Assessing biomarker syngeneity using branched alkanes with quaternary carbon (BAQCs) and other plastic contaminants. Geochim. Cosmochim. Acta 72, 871–888 (2008). (PMID: 10.1016/j.gca.2007.11.028)
Brocks, J. J. & Hope, J. M. Tailing of chromatographic peaks in GC–MS caused by interaction of halogenated solvents with the ion source. J. Chromatogr. Sci. 52, 471–475 (2014). (PMID: 2378094410.1093/chromsci/bmt068)
Holba, A. G. et al. Application of tetracyclic polyprenoids as indicators of input from fresh-brackish water environments. Org. Geochem. 34, 441–469 (2003). (PMID: 10.1016/S0146-6380(02)00193-6)
Peters, K. E., Walters, C. C. & Moldowan, J. M. The Biomarker Guide Vol. 2, 2nd edn (Cambridge Univ. Press, 2004).
Wang, X. et al. Oxygen, climate and the chemical evolution of a 1400 million year old tropical marine setting. Am. J. Sci. 317, 861–900 (2017). (PMID: 10.2475/08.2017.01)
Zhang, S. et al. Sufficient oxygen for animal respiration 1,400 million years ago. Proc. Natl Acad. Sci. USA 113, 1731–1736 (2016). (PMID: 26729865476375310.1073/pnas.1523449113) - Accession Number: 0 (Sterols)
- Publication Date: Date Created: 20230607 Date Completed: 20230630 Latest Revision: 20230630
- Publication Date: 20231215
- Accession Number: 10.1038/s41586-023-06170-w
- Accession Number: 37286610
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.