Validation of Fourier Transform Infrared Microspectroscopy for the Evaluation of Enzymatic Cross-Linking of Bone Collagen.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Mieczkowska A;Mieczkowska A; Mabilleau G; Mabilleau G; Mabilleau G
  • Source:
    Calcified tissue international [Calcif Tissue Int] 2023 Sep; Vol. 113 (3), pp. 344-353. Date of Electronic Publication: 2023 Jun 06.
  • Publication Type:
    Journal Article; Research Support, Non-U.S. Gov't
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Springer Verlag Country of Publication: United States NLM ID: 7905481 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0827 (Electronic) Linking ISSN: 0171967X NLM ISO Abbreviation: Calcif Tissue Int Subsets: MEDLINE
    • Publication Information:
      Publication: New York Ny : Springer Verlag
      Original Publication: Berlin, New York, Springer International.
    • Subject Terms:
    • Abstract:
      Enzymatic cross-linking of the bone collagen is important to resist to crack growth and to increased flexural strength. In the present study, we proposed a new method for assessment of enzymatic cross-link based on Fourier transform infrared (FTIR) microspectroscopy that takes into account secondary structure of type I collagen. Briefly, femurs were collected from sham or ovariectomized mice and subjected either to high-performance liquid chromatography-mass spectrometry or embedded in polymethylmethacrylate, cut and analyzed by FTIR microspectroscopy. FTIR acquisition was recorded before and after ultraviolet (UV) exposure or acid treatment. In addition, femurs from a second animal study were used to compare gene expression of Plod2 and Lox enzymes and enzymatic cross-links determined by FTIR microspectroscopy. We evidenced here that intensities and areas of subbands located at ~1660, ~1680, and ~1690 cm -1 were positively and significantly associated with the concentration of pyridinoline (PYD), deoxypyridinoline, or immature dihydroxylysinonorleucine/hydroxylysinonorleucine cross-links. Seventy-two hours exposure to UV light significantly reduced by ~86% and ~89% the intensity and area of the ~1660 cm -1 subband. Similarly, 24 h of acid treatment significantly reduced by 78% and 76% the intensity and area of the ~1690 cm -1 subband. Plod2 and Lox expression were also positively associated to the signal of the ~1660 and ~1690 cm -1 subbands. In conclusion, our study provided a new method for decomposing the amide I envelope of bone section that positively correlates with PYD and immature collagen cross-links. This method allows for investigation of tissue distribution of enzymatic cross-links in bone section.
      (© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Granke M, Does MD, Nyman JS (2015) The role of water compartments in the material properties of cortical bone. Calcif Tissue Int 97:292–307. (PMID: 10.1007/s00223-015-9977-5257830114526331)
      Yamauchi M, Sricholpech M (2012) Lysine post-translational modifications of collagen. Essays Biochem 52:113–133. (PMID: 10.1042/bse0520113227085673499978)
      McNerny EM, Gong B, Morris MD, Kohn DH (2015) Bone fracture toughness and strength correlate with collagen cross-link maturity in a dose-controlled lathyrism mouse model. J Bone Miner Res 30:455–464. (PMID: 10.1002/jbmr.235625213475)
      Eyre DR, Paz MA, Gallop PM (1984) Cross-linking in collagen and elastin. Annu Rev Biochem 53:717–748. (PMID: 10.1146/annurev.bi.53.070184.0034416148038)
      Uzawa K, Grzesik WJ, Nishiura T, Kuznetsov SA, Robey PG, Brenner DA, Yamauchi M (1999) Differential expression of human lysyl hydroxylase genes, lysine hydroxylation, and cross-linking of type I collagen during osteoblastic differentiation in vitro. J Bone Miner Res 14:1272–1280. (PMID: 10.1359/jbmr.1999.14.8.127210457259)
      Saito T, Terajima M, Taga Y, Hayashi F, Oshima S, Kasamatsu A, Okubo Y, Ito C, Toshimori K, Sunohara M, Tanzawa H, Uzawa K, Yamauchi M (2022) Decrease of lysyl hydroxylase 2 activity causes abnormal collagen molecular phenotypes, defective mineralization and compromised mechanical properties of bone. Bone 154:116242. (PMID: 10.1016/j.bone.2021.11624234718219)
      Trackman PC (2016) Enzymatic and non-enzymatic functions of the lysyl oxidase family in bone. Matrix Biol 52–54:7–18. (PMID: 10.1016/j.matbio.2016.01.001267721524875786)
      Yamauchi M, Katz EP, Otsubo K, Teraoka K, Mechanic GL (1989) Cross-linking and stereospecific structure of collagen in mineralized and nonmineralized skeletal tissues. Connect Tissue Res 21:159–167. (PMID: 10.3109/030082089090500062605940)
      Bailey AJ, Peach CM, Fowler LJ (1970) Chemistry of the collagen cross-links. Isolation and characterization of two intermediate intermolecular cross-links in collagen. Biochem J 117:819–831. (PMID: 10.1042/bj117081954519071179041)
      Bielajew BJ, Hu JC, Athanasiou KA (2020) Collagen: quantification, biomechanics, and role of minor subtypes in cartilage. Nat Rev Mater 5:730–747. (PMID: 10.1038/s41578-020-0213-1339961478114887)
      Wang ZX, Lloyd AA, Burket JC, Gourion-Arsiquaud S, Donnelly E (2016) Altered distributions of bone tissue mineral and collagen properties in women with fragility fractures. Bone 84:237–244. (PMID: 10.1016/j.bone.2016.01.01226780445)
      Paschalis EP, Verdelis K, Doty SB, Boskey AL, Mendelsohn R, Yamauchi M (2001) Spectroscopic characterization of collagen cross-links in bone. J Bone Miner Res 16:1821–1828. (PMID: 10.1359/jbmr.2001.16.10.182111585346)
      Paschalis EP, Gamsjaeger S, Tatakis DN, Hassler N, Robins SP, Klaushofer K (2015) Fourier transform Infrared spectroscopic characterization of mineralizing type I collagen enzymatic trivalent cross-links. Calcif Tissue Int 96:18–29. (PMID: 10.1007/s00223-014-9933-925424977)
      Wolfel EM, Schmidt FN, Vom Scheidt A, Siebels AK, Wulff B, Mushumba H, Ondruschka B, Puschel K, Scheijen J, Schalkwijk CG, Vettorazzi E, Jahn-Rickert K, Gludovatz B, Schaible E, Amling M, Rauner M, Hofbauer LC, Zimmermann EA, Busse B (2022) Dimorphic mechanisms of fragility in diabetes mellitus: the role of reduced collagen fibril deformation. J Bone Miner Res 37:2259–2276. (PMID: 10.1002/jbmr.470636112316)
      Schmidt FN, Zimmermann EA, Campbell GM, Sroga GE, Puschel K, Amling M, Tang SY, Vashishth D, Busse B (2017) Assessment of collagen quality associated with non-enzymatic cross-links in human bone using Fourier-transform infrared imaging. Bone 97:243–251. (PMID: 10.1016/j.bone.2017.01.015281099175443987)
      Farlay D, Duclos ME, Gineyts E, Bertholon C, Viguet-Carrin S, Nallala J, Sockalingum GD, Bertrand D, Roger T, Hartmann DJ, Chapurlat R, Boivin G (2011) The ratio 1660/1690 cm(-1) measured by infrared microspectroscopy is not specific of enzymatic collagen cross-links in bone tissue. PLoS ONE 6:e28736. (PMID: 10.1371/journal.pone.0028736221949003237494)
      Belbachir K, Noreen R, Gouspillou G, Petibois C (2009) Collagen types analysis and differentiation by FTIR spectroscopy. Anal Bioanal Chem 395:829–837. (PMID: 10.1007/s00216-009-3019-y19685340)
      Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta 1767:1073–1101. (PMID: 10.1016/j.bbabio.2007.06.00417692815)
      Siegel RC, Fu JC (1976) Collagen cross-linking. Purification and substrate specificity of lysyl oxidase. J Biol Chem 251:5779–5785. (PMID: 10.1016/S0021-9258(17)33123-X9401)
      van der Slot AJ, Zuurmond AM, Bardoel AF, Wijmenga C, Pruijs HE, Sillence DO, Brinckmann J, Abraham DJ, Black CM, Verzijl N, DeGroot J, Hanemaaijer R, TeKoppele JM, Huizinga TW, Bank RA (2003) Identification of PLOD2 as telopeptide lysyl hydroxylase, an important enzyme in fibrosis. J Biol Chem 278:40967–40972. (PMID: 10.1074/jbc.M30738020012881513)
      Kelly NH, Schimenti JC, Patrick Ross F, van der Meulen MC (2014) A method for isolating high quality RNA from mouse cortical and cancellous bone. Bone 68:1–5. (PMID: 10.1016/j.bone.2014.07.022250730314281890)
      Bassan P, Sachdeva A, Kohler A, Hughes C, Henderson A, Boyle J, Shanks JH, Brown M, Clarke NW, Gardner P (2012) FTIR microscopy of biological cells and tissue: data analysis using resonant Mie scattering (RMieS) EMSC algorithm. Analyst 137:1370–1377. (PMID: 10.1039/c2an16088a22318917)
      Bailey AJ (1968) Intermediate labile intermolecular crosslinks in collagen fibres. Biochim Biophys Acta 160:447–453. (PMID: 10.1016/0005-2795(68)90216-X5680271)
      Gineyts E, Borel O, Chapurlat R, Garnero P (2010) Quantification of immature and mature collagen crosslinks by liquid chromatography-electrospray ionization mass spectrometry in connective tissues. J Chromatogr B Analyt Technol Biomed Life Sci 878:1449–1454. (PMID: 10.1016/j.jchromb.2010.03.03920417158)
      Gourion-Arsiquaud S, Faibish D, Myers E, Spevak L, Compston J, Hodsman A, Shane E, Recker RR, Boskey ER, Boskey AL (2009) Use of FTIR spectroscopic imaging to identify parameters associated with fragility fracture. J Bone Miner Res 24:1565–1571. (PMID: 10.1359/jbmr.090414194193032730929)
      Paschalis EP, Tatakis DN, Robins S, Fratzl P, Manjubala I, Zoehrer R, Gamsjaeger S, Buchinger B, Roschger A, Phipps R, Boskey AL, Dall’Ara E, Varga P, Zysset P, Klaushofer K, Roschger P (2011) Lathyrism-induced alterations in collagen cross-links influence the mechanical properties of bone material without affecting the mineral. Bone 49:1232–1241. (PMID: 10.1016/j.bone.2011.08.027219204853229977)
      Smolina M, Goormaghtigh E (2018) Gene expression data and FTIR spectra provide a similar phenotypic description of breast cancer cell lines in 2D and 3D cultures. Analyst 143:2520–2530. (PMID: 10.1039/C8AN00145F29682671)
      Berteau JP, Gineyts E, Pithioux M, Baron C, Boivin G, Lasaygues P, Chabrand P, Follet H (2015) Ratio between mature and immature enzymatic cross-links correlates with post-yield cortical bone behavior: An insight into greenstick fractures of the child fibula. Bone 79:190–195. (PMID: 10.1016/j.bone.2015.05.04526079997)
      Depalle B, Duarte AG, Fiedler IAK, Pujo-Menjouet L, Buehler MJ, Berteau JP (2018) The different distribution of enzymatic collagen cross-links found in adult and children bone result in different mechanical behavior of collagen. Bone 110:107–114. (PMID: 10.1016/j.bone.2018.01.02429414596)
      Acevedo C, Bale H, Gludovatz B, Wat A, Tang SY, Wang M, Busse B, Zimmermann EA, Schaible E, Allen MR, Burr DB, Ritchie RO (2015) Alendronate treatment alters bone tissues at multiple structural levels in healthy canine cortical bone. Bone 81:352–363. (PMID: 10.1016/j.bone.2015.08.00226253333)
      Gobron B, Couchot M, Irwin N, Legrand E, Bouvard B, Mabilleau G (2023) Development of a first-in-class unimolecular dual GIP/GLP-2 analogue, GL-0001, for the treatment of bone fragility. J Bone Miner Res 38:733–748. (PMID: 10.1002/jbmr.479236850034)
    • Contributed Indexing:
      Keywords: Collagen maturity; Enzymatic collagen cross-linking; FTIR; Hydroxypyridinoline; Pyridinoline
    • Accession Number:
      9007-34-5 (Collagen)
      0 (Collagen Type I)
    • Publication Date:
      Date Created: 20230606 Date Completed: 20230828 Latest Revision: 20230830
    • Publication Date:
      20231215
    • Accession Number:
      10.1007/s00223-023-01105-z
    • Accession Number:
      37278762