Hypoxia-induced reprogramming of glucose-dependent metabolic pathways maintains the stemness of human bone marrow-derived endothelial progenitor cells.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • Subject Terms:
    • Abstract:
      The benefits of hypoxia for maintaining the stemness of cultured human bone marrow-derived endothelial progenitor cells (BM EPCs) have previously been demonstrated but the mechanisms responsible remain unclear. Growing evidences suggest that cellular metabolism plays an important role in regulating stem cell fate and self-renewal. Here we aimed to detect the changes of glucose metabolism and to explore its role on maintaining the stemness of BM EPCs under hypoxia. We identified the metabolic status of BM EPCs by using extracellular flux analysis, LC-MS/MS, and 13 C tracing HPLC-QE-MS, and found that hypoxia induced glucose metabolic reprogramming, which manifested as increased glycolysis and pentose phosphate pathway (PPP), decreased tricarboxylic acid (TCA) and mitochondrial respiration. We further pharmacologically altered the metabolic status of cells by employing various of inhibitors of key enzymes of glycolysis, PPP, TCA cycle and mitochondria electron transport chain (ETC). We found that inhibiting glycolysis or PPP impaired cell proliferation either under normoxia or hypoxia. On the contrary, inhibiting pyruvate oxidation, TCA or ETC promoted cell proliferation under normoxia mimicking hypoxic conditions. Moreover, promoting pyruvate oxidation reverses the maintenance effect of hypoxia on cell stemness. Taken together, our data suggest that hypoxia induced glucose metabolic reprogramming maintains the stemness of BM EPCs, and artificial manipulation of cell metabolism can be an effective way for regulating the stemness of BM EPCs, thereby improving the efficiency of cell expansion in vitro.
      (© 2023. The Author(s).)
    • References:
      Mol Cancer. 2017 Jun 8;16(1):102. (PMID: 28595656)
      Drug Discov Today. 2008 Mar;13(5-6):268-74. (PMID: 18342804)
      Stem Cell Res. 2009 Sep-Nov;3(2-3):142-56. (PMID: 19716358)
      EBioMedicine. 2020 Apr;54:102722. (PMID: 32268273)
      Cancer. 2009 Oct 15;115(20):4655-66. (PMID: 19637353)
      Nature. 2013 Jun 6;498(7452):109-12. (PMID: 23685455)
      Am J Physiol. 1999 Sep;277(3):E401-7. (PMID: 10484349)
      Stem Cells Transl Med. 2019 Jan;8(1):14-21. (PMID: 30156755)
      Antioxid Redox Signal. 2007 Mar;9(3):293-9. (PMID: 17184172)
      Trends Biochem Sci. 2014 Aug;39(8):347-54. (PMID: 25037503)
      Am J Hematol. 2018 Jul;93(7):931-942. (PMID: 29396859)
      Eur J Biochem. 1993 Feb 15;212(1):95-9. (PMID: 8444168)
      Nature. 2013 Mar 21;495(7441):370-4. (PMID: 23395962)
      Structure. 2007 Aug;15(8):992-1004. (PMID: 17683942)
      Mol Cancer Ther. 2008 Jan;7(1):110-20. (PMID: 18202014)
      Cancer Res. 2005 Jan 1;65(1):177-85. (PMID: 15665293)
      Oncotarget. 2017 Jul 11;8(28):46363-46380. (PMID: 28624784)
      Biochem Soc Trans. 2003 Dec;31(Pt 6):1168-70. (PMID: 14641019)
      Cell. 2006 Aug 25;126(4):663-76. (PMID: 16904174)
      Annu Rev Cell Dev Biol. 2011;27:441-64. (PMID: 21985671)
      Proc Natl Acad Sci U S A. 2005 Mar 29;102(13):4783-8. (PMID: 15772165)
      Acta Pharmacol Sin. 2011 Jul;32(7):912-20. (PMID: 21666701)
      Neuro Oncol. 2016 Sep;18(9):1219-29. (PMID: 26917237)
      Acta Neuropathol. 2013 Nov;126(5):763-80. (PMID: 24005892)
      Ann N Y Acad Sci. 2012 Apr;1254:82-89. (PMID: 22548573)
      J Hematol Oncol. 2011 May 24;4:24. (PMID: 21609465)
      Stem Cells. 2016 Aug;34(8):2236-48. (PMID: 27145479)
      Science. 2009 May 22;324(5930):1029-33. (PMID: 19460998)
      Neurosci Lett. 2008 Nov 7;445(1):36-41. (PMID: 18755241)
      Eur J Pharmacol. 2019 Jul 5;854:232-239. (PMID: 31004604)
      Circ Res. 2012 Feb 17;110(4):526-9. (PMID: 22343555)
      Annu Rev Biophys Biophys Chem. 1986;15:97-117. (PMID: 3013232)
      Cell Stem Cell. 2012 Nov 2;11(5):589-95. (PMID: 23122286)
      FEBS Lett. 1996 Mar 11;382(1-2):167-70. (PMID: 8612743)
      Nat Commun. 2020 Apr 20;11(1):1880. (PMID: 32312982)
      Oncotarget. 2015 Nov 10;6(35):37758-69. (PMID: 26413751)
      Blood. 2016 Dec 22;128(25):2988-2999. (PMID: 27769957)
      Stem Cell Res. 2019 Jul;38:101464. (PMID: 31176915)
      Biochemistry. 2005 Aug 9;44(31):10552-61. (PMID: 16060664)
      J Pathol. 2022 Apr;256(4):414-426. (PMID: 34927243)
      Cancer Res. 2018 Apr 15;78(8):1923-1934. (PMID: 29386184)
      Proc Natl Acad Sci U S A. 1981 Sep;78(9):5381-5. (PMID: 6795632)
      Nature. 2015 Dec 3;528(7580):99-104. (PMID: 26632588)
      Stem Cells. 2017 May;35(5):1246-1258. (PMID: 28142208)
      Biochem J. 1975 Apr;148(1):85-96. (PMID: 1156402)
      Nat Rev Cancer. 2008 Sep;8(9):705-13. (PMID: 19143055)
      Cell Stem Cell. 2012 Nov 2;11(5):596-606. (PMID: 23122287)
      Cell Stem Cell. 2015 Dec 3;17(6):651-662. (PMID: 26637942)
      J Biol Chem. 2001 Mar 23;276(12):9519-25. (PMID: 11120745)
      Mol Cell. 2011 Dec 23;44(6):864-77. (PMID: 22195962)
      Mol Cell. 2021 Feb 18;81(4):691-707.e6. (PMID: 33382985)
      Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2784-9. (PMID: 22308314)
      Cytotherapy. 2008;10(6):611-24. (PMID: 18836916)
      Cancer Lett. 2001 Nov 8;173(1):83-91. (PMID: 11578813)
    • Accession Number:
      IY9XDZ35W2 (Glucose)
      0 (Pyruvates)
    • Publication Date:
      Date Created: 20230531 Date Completed: 20230602 Latest Revision: 20230609
    • Publication Date:
      20240829
    • Accession Number:
      PMC10232473
    • Accession Number:
      10.1038/s41598-023-36007-5
    • Accession Number:
      37258701